Tixier Florent, Lopez-Ramirez Felipe, Blanco Alejandra, Yasrab Mohammad, Javed Ammar A, Chu Linda C, Fishman Elliot K, Kawamoto Satomi
The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA.
Department of Surgery, The NYU Grossman School of Medicine and NYU Langone Health, New York, NY 10016, USA.
Bioengineering (Basel). 2025 Jan 16;12(1):80. doi: 10.3390/bioengineering12010080.
The WHO grading of pancreatic neuroendocrine neoplasms (PanNENs) is essential in patient management and an independent prognostic factor for patient survival. Radiomics features from CE-CT images hold promise for the outcome and tumor grade prediction. However, variations in reconstruction parameters can impact the predictive value of radiomics. 127 patients with histopathologically confirmed PanNENs underwent CT scans with filtered back projection (B20f) and iterative (I26f) reconstruction kernels. 3190 radiomic features were extracted from tumors and pancreatic volumes. Wilcoxon paired tests assessed the impact of reconstruction kernels and ComBat harmonization efficiency. SVM models were employed to predict tumor grade using the entire set of radiomics features or only those identified as harmonizable. The models' performance was assessed on an independent dataset of 36 patients. Significant differences, after correction for multiple testing, were observed in 69% of features in the pancreatic volume and 51% in the tumor volume with B20f and I26f kernels. SVM models demonstrated accuracy ranging from 0.67 (95%CI: 0.50-0.81) to 0.83 (95%CI: 0.69-0.94) in distinguishing grade 1 cases from higher grades. Reconstruction kernels alter radiomics features and iterative kernel models trended towards higher performance. ComBat harmonization mitigates kernel impacts but addressing this effect is crucial in studies involving data from different kernels.
世界卫生组织对胰腺神经内分泌肿瘤(PanNENs)的分级在患者管理中至关重要,并且是患者生存的独立预后因素。对比增强CT图像的放射组学特征有望用于预测预后和肿瘤分级。然而,重建参数的变化会影响放射组学的预测价值。127例经组织病理学确诊的PanNENs患者接受了采用滤波反投影(B20f)和迭代(I26f)重建内核的CT扫描。从肿瘤和胰腺体积中提取了3190个放射组学特征。采用Wilcoxon配对检验评估重建内核的影响和ComBat归一化效率。使用支持向量机(SVM)模型,利用全部放射组学特征或仅利用那些被确定为可归一化的特征来预测肿瘤分级。在一个包含36例患者的独立数据集中评估模型的性能。在进行多重检验校正后,观察到使用B20f和I26f内核时,胰腺体积中69%的特征以及肿瘤体积中51%的特征存在显著差异。SVM模型在区分1级病例和更高分级病例时,准确率范围为0.67(95%CI:0.50 - 0.81)至0.83(95%CI:0.69 - 0.94)。重建内核会改变放射组学特征,且迭代内核模型的性能有提高的趋势。ComBat归一化可减轻内核的影响,但在涉及来自不同内核数据的研究中,解决这种影响至关重要。