Suppr超能文献

基于深度学习的 CT 重建核图像转换可提高肺结节或肿块的放射组学可重复性。

Deep Learning-based Image Conversion of CT Reconstruction Kernels Improves Radiomics Reproducibility for Pulmonary Nodules or Masses.

机构信息

From the Department of Radiology and Research Institute of Radiology (J.C., S.M.L.[1], K.H.D., S.M.L.[2], J.B.S.) and Department of Convergence Medicine (G.L., J.G.L.), University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43 Gil, Songpa-gu, Seoul 138-736, Korea.

出版信息

Radiology. 2019 Aug;292(2):365-373. doi: 10.1148/radiol.2019181960. Epub 2019 Jun 18.

Abstract

Background Intratumor heterogeneity in lung cancer may influence outcomes. CT radiomics seeks to assess tumor features to provide detailed imaging features. However, CT radiomic features vary according to the reconstruction kernel used for image generation. Purpose To investigate the effect of different reconstruction kernels on radiomic features and assess whether image conversion using a convolutional neural network (CNN) could improve reproducibility of radiomic features between different kernels. Materials and Methods In this retrospective analysis, patients underwent non-contrast material-enhanced and contrast material-enhanced axial chest CT with soft kernel (B30f) and sharp kernel (B50f) reconstruction using a single CT scanner from April to June 2017. To convert different kernels without sinogram, the CNN model was developed using residual learning and an end-to-end way. Kernel-converted images were generated, from B30f to B50f and from B50f to B30f. Pulmonary nodules or masses were semiautomatically segmented and 702 radiomic features (tumor intensity, texture, and wavelet features) were extracted. Measurement variability in radiomic features was evaluated using the concordance correlation coefficient (CCC). Results A total of 104 patients were studied, including 54 women and 50 men, with pulmonary nodules or masses (mean age, 63.2 years ± 10.5). The CCC between two readers using the same kernel was 0.92, and 592 of 702 (84.3%) of the radiomic features were reproducible (CCC ≥ 0.85); using different kernels, the CCC was 0.38 and only 107 of 702 (15.2%) of the radiomic features were reliable. Texture features and wavelet features were predominantly affected by reconstruction kernel (CCC, from 0.88 to 0.61 for texture features and from 0.92 to 0.35 for wavelet features). After applying image conversion, CCC improved to 0.84 and 403 of 702 (57.4%) radiomic features were reproducible (CCC, 0.85 for texture features and 0.84 for wavelet features). Conclusion Chest CT image conversion using a convolutional neural network effectively reduced the effect of two different reconstruction kernels and may improve the reproducibility of radiomic features in pulmonary nodules or masses. © RSNA, 2019 See also the editorial by Park in this issue.

摘要

背景 肺癌肿瘤内异质性可能影响治疗效果。CT 放射组学旨在评估肿瘤特征,提供详细的影像学特征。然而,CT 放射组学特征因用于图像生成的重建核而有所不同。目的 探讨不同重建核对放射组学特征的影响,以及是否可以通过卷积神经网络(CNN)对图像进行转换来提高不同核之间放射组学特征的可重复性。材料与方法 本回顾性分析纳入 2017 年 4 月至 6 月期间在同一台 CT 扫描仪上接受软组织(B30f)和骨(B50f)重建的非对比增强和对比增强轴向胸部 CT 的患者。为了在不使用射线图的情况下转换不同的内核,使用残差学习和端到端方法开发了 CNN 模型。生成了从 B30f 到 B50f 和从 B50f 到 B30f 的内核转换图像。半自动分割肺结节或肿块,并提取 702 个放射组学特征(肿瘤强度、纹理和小波特征)。使用一致性相关系数(CCC)评估放射组学特征的测量变异性。结果 共纳入 104 例患者,包括 54 名女性和 50 名男性,患有肺结节或肿块(平均年龄,63.2 岁±10.5 岁)。同一内核下两位读者的 CCC 为 0.92,702 个放射组学特征中有 592 个(84.3%)具有可重复性(CCC≥0.85);使用不同的内核时,CCC 为 0.38,702 个放射组学特征中只有 107 个(15.2%)具有可靠性。纹理特征和小波特征主要受重建核影响(CCC,纹理特征从 0.88 降至 0.61,小波特征从 0.92 降至 0.35)。应用图像转换后,CCC 提高至 0.84,702 个放射组学特征中有 403 个(57.4%)具有可重复性(CCC,纹理特征为 0.85,小波特征为 0.84)。结论 使用卷积神经网络进行胸部 CT 图像转换可有效减少两种不同重建核的影响,可能提高肺结节或肿块中放射组学特征的可重复性。 ©2019RSNA. 本期另见 Park 编辑述评。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验