Levine Raphael D
Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
Entropy (Basel). 2025 Jan 7;27(1):43. doi: 10.3390/e27010043.
A quantitative expression for the value of information within the framework of information theory and of the maximal entropy formulation is discussed. We examine both a local, differential measure and an integral, global measure for the value of the change in information when additional input is provided. The differential measure is a potential and as such carries a physical dimension. The integral value has the dimension of information. The differential measure can be used, for example, to discuss how the value of information changes with time or with other parameters of the problem.
讨论了信息论框架内信息值的定量表达式以及最大熵公式。我们研究了在提供额外输入时信息变化值的局部微分度量和积分全局度量。微分度量是一种势,因此具有物理维度。积分值具有信息维度。例如,微分度量可用于讨论信息值如何随时间或问题的其他参数变化。