Garicano-Mena Jesús, Santos Matilde
ETSI Aeronáutica y del Espacio-Universidad Politécnica de Madrid, 28040 Madrid, Spain.
Center for Computational Simulation (CCS), 28660 Boadilla del Monte, Spain.
Biomimetics (Basel). 2024 Dec 30;10(1):13. doi: 10.3390/biomimetics10010013.
In this contribution, a methodology for the optimal tuning of controllers of complex systems based on meta-heuristic techniques is proposed. Two bio-inspired meta-heuristic optimization algorithms -the Antlion Optimizer (ALO) and the Whale Optimization Algorithm (WOA)- have been applied to two different dynamic systems: the Hoop & Ball electromechanical system, a system where a linearized description is adequate; and to a Wind Turbine-Generator-Rectifier, as an example of a complex non-linear dynamic system. The performance of the ALO and WOA techniques for the tuning of conventional PID controllers is evaluated in relation to the number of agents nS and the maximum number of iterations nMaxIter; given the stochastic nature of both methods, repeatability is also addressed. Finally, the computational effort required for their implementation is considered. By analyzing the obtained metrics, it is observed that both methods provide comparable results for the two systems considered and, therefore, the ALO and WOA techniques can complement each other by exploiting the advantages of each of them in controller tuning.
在本论文中,提出了一种基于元启发式技术对复杂系统控制器进行优化调整的方法。两种受生物启发的元启发式优化算法——蚁狮优化算法(ALO)和鲸鱼优化算法(WOA)——已应用于两个不同的动态系统:环形球机电系统,一个线性化描述足够的系统;以及风力涡轮机-发电机-整流器,作为一个复杂非线性动态系统的示例。针对传统PID控制器的调整,评估了ALO和WOA技术在智能体数量nS和最大迭代次数nMaxIter方面的性能;鉴于这两种方法的随机性,还探讨了可重复性。最后,考虑了实施它们所需的计算量。通过分析获得的指标,可以观察到这两种方法在所考虑的两个系统中提供了可比的结果,因此,ALO和WOA技术可以通过利用它们各自在控制器调整中的优势相互补充。