Suppr超能文献

考虑客户偏好的绿色车辆路径问题的Q学习驱动蝴蝶优化算法

Q-Learning-Driven Butterfly Optimization Algorithm for Green Vehicle Routing Problem Considering Customer Preference.

作者信息

Meng Weiping, He Yang, Zhou Yongquan

机构信息

College of Artificial Intelligence, Guangxi Minzu University, Nanning 530006, China.

Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis, Nanning 530006, China.

出版信息

Biomimetics (Basel). 2025 Jan 15;10(1):57. doi: 10.3390/biomimetics10010057.

Abstract

This paper proposes a Q-learning-driven butterfly optimization algorithm (QLBOA) by integrating the Q-learning mechanism of reinforcement learning into the butterfly optimization algorithm (BOA). In order to improve the overall optimization ability of the algorithm, enhance the optimization accuracy, and prevent the algorithm from falling into a local optimum, the Gaussian mutation mechanism with dynamic variance was introduced, and the migration mutation mechanism was also used to enhance the population diversity of the algorithm. Eighteen benchmark functions were used to compare the proposed method with five classical metaheuristic algorithms and three BOA variable optimization methods. The QLBOA was used to solve the green vehicle routing problem with time windows considering customer preferences. The influence of decision makers' subjective preferences and weight factors on fuel consumption, carbon emissions, penalty cost, and total cost are analyzed. Compared with three classical optimization algorithms, the experimental results show that the proposed QLBOA has a generally superior performance.

摘要

本文通过将强化学习的Q学习机制集成到蝴蝶优化算法(BOA)中,提出了一种基于Q学习驱动的蝴蝶优化算法(QLBOA)。为了提高算法的整体优化能力,提升优化精度,并防止算法陷入局部最优,引入了具有动态方差的高斯变异机制,还采用了迁移变异机制来增强算法的种群多样性。使用18个基准函数将所提出的方法与五种经典元启发式算法和三种BOA变量优化方法进行比较。将QLBOA用于解决考虑客户偏好的带时间窗绿色车辆路径问题。分析了决策者主观偏好和权重因素对燃料消耗、碳排放、惩罚成本和总成本的影响。与三种经典优化算法相比,实验结果表明所提出的QLBOA具有总体上更优的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/665e/11762329/15588b8f8f0e/biomimetics-10-00057-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验