Sarah Rokeya, Schimmelpfennig Kory, Rohauer Riley, Lewis Christopher L, Limon Shah M, Habib Ahasan
Sustainable Product Design and Architecture, Keene State College, Keene, NH 03431, USA.
Manufacturing and Mechanical Engineering Technology, Rochester Institute of Technology, Rochester, NY 14623, USA.
Gels. 2025 Jan 7;11(1):45. doi: 10.3390/gels11010045.
The field of tissue engineering has made significant advancements with extrusion-based bioprinting, which uses shear forces to create intricate tissue structures. However, the success of this method heavily relies on the rheological properties of bioinks. Most bioinks use shear-thinning. While a few component-based efforts have been reported to predict the viscosity of bioinks, the impact of shear rate has been vastly ignored. To address this gap, our research presents predictive models using machine learning (ML) algorithms, including polynomial fit (PF), decision tree (DT), and random forest (RF), to estimate bioink viscosity based on component weights and shear rate. We utilized novel bioinks composed of varying percentages of alginate (2-5.25%), gelatin (2-5.25%), and TEMPO-Nano fibrillated cellulose (0.5-1%) at shear rates from 0.1 to 100 s. Our study analyzed 169 rheological measurements using 80% training and 20% validation data. The results, based on the coefficient of determination (R2) and mean absolute error (MAE), showed that the RF algorithm-based model performed best: [(R2, MAE) RF = (0.99, 0.09), (R2, MAE) PF = (0.95, 0.28), (R2, MAE) DT = (0.98, 0.13)]. These predictive models serve as valuable tools for bioink formulation optimization, allowing researchers to determine effective viscosities without extensive experimental trials to accelerate tissue engineering.
组织工程领域通过基于挤出的生物打印技术取得了重大进展,该技术利用剪切力来创建复杂的组织结构。然而,这种方法的成功很大程度上依赖于生物墨水的流变特性。大多数生物墨水使用剪切变稀特性。虽然已有一些基于成分的研究报道了预测生物墨水粘度的方法,但剪切速率的影响却被极大地忽视了。为了填补这一空白,我们的研究提出了使用机器学习(ML)算法的预测模型,包括多项式拟合(PF)、决策树(DT)和随机森林(RF),以根据成分权重和剪切速率来估计生物墨水的粘度。我们使用了新型生物墨水,其由不同百分比的藻酸盐(2 - 5.25%)、明胶(2 - 5.25%)和TEMPO - 纳米原纤化纤维素(0.5 - 1%)组成,剪切速率范围为0.1至100 s⁻¹。我们的研究使用80%的训练数据和20%的验证数据对169次流变测量进行了分析。基于决定系数(R²)和平均绝对误差(MAE)的结果表明,基于随机森林算法的模型表现最佳:[(R², MAE) RF = (0.99, 0.09), (R², MAE) PF = (0.95, 0.28), (R², MAE) DT = (0.98, 0.13)]。这些预测模型是优化生物墨水配方的宝贵工具,使研究人员无需进行大量实验就能确定有效粘度,从而加速组织工程研究。