Suppr超能文献

用分子动力学模拟和机器学习分析和预测温度、剪切率和纳米粒子负载条件下聚合物纳米复合材料的粘度。

Analyzing and Predicting the Viscosity of Polymer Nanocomposites in the Conditions of Temperature, Shear Rate, and Nanoparticle Loading with Molecular Dynamics Simulations and Machine Learning.

机构信息

State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 10029, People's Republic of China.

Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 10029, People's Republic of China.

出版信息

J Phys Chem B. 2023 Apr 20;127(15):3596-3605. doi: 10.1021/acs.jpcb.3c01697. Epub 2023 Apr 5.

Abstract

Predicting the viscosity (η) of polymer nanocomposites (PNCs) is of critical importance as it governs a dominant role in PNCs' processing and application. Machine-learning (ML) algorithms, enabled by pre-existing experimental and computational data, have emerged as robust tools for the prediction of quantitative relationships between feature parameters and various physical properties of materials. In this work, we employed nonequilibrium molecular dynamics (NEMD) simulation with ML models to systematically investigate the η of PNCs over a wide range of nanoparticle (NP) loadings (φ), shear rates (γ̇), and temperatures (). With the increase in γ̇, shear thinning takes place as the value of η decreases on the orders of magnitude. In addition, the φ dependence and dependence reduce to the extent that it is not visible at high γ̇. The value of η for PNCs is proportional to φ and inversely proportional to below the intermediate γ̇. Using the obtained NEMD results, four machine-learning models were trained to provide effective predictions for the η. The extreme gradient boosting (XGBoost) model yields the best accuracy in η prediction under complex conditions and is further used to evaluate feature importance. This quantitative structure-property relationship (QSPR) model used physical views to investigate the effect of process parameters, such as , φ, and γ̇, on the η of PNCs and paves the path for theoretically proposing reasonable parameters for successful processing.

摘要

预测聚合物纳米复合材料 (PNC) 的粘度 (η) 至关重要,因为它在 PNC 的加工和应用中起着主导作用。机器学习 (ML) 算法利用现有的实验和计算数据,已成为预测特征参数与材料各种物理性质之间定量关系的强大工具。在这项工作中,我们采用非平衡分子动力学 (NEMD) 模拟和 ML 模型,系统地研究了 PNC 在广泛的纳米颗粒 (NP) 负载 (φ)、剪切速率 (γ̇) 和温度 (T) 范围内的 η。随着 γ̇的增加,剪切变稀发生,η 值按数量级减小。此外,φ 依赖性和 T 依赖性减小到在高 γ̇下不可见的程度。PNC 的 η 值与 φ 成正比,与 成反比,低于中间 γ̇。利用获得的 NEMD 结果,训练了四个机器学习模型,以提供对 η 的有效预测。在复杂条件下,极端梯度提升 (XGBoost) 模型在 η 预测方面具有最佳精度,并进一步用于评估特征重要性。该定量结构-性质关系 (QSPR) 模型使用物理观点研究了加工参数(如 T、φ 和 γ̇)对 PNC η 的影响,为理论上提出成功加工的合理参数铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验