文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Biocomposite Polyvinyl Alcohol/Ferritin Hydrogels with Enhanced Stretchability and Conductivity for Flexible Strain Sensors.

作者信息

Fu Qiang, Tang Junxiao, Wang Weimin, Wang Rongjie

机构信息

China Shipbuilding Industry Corporation, Research Institute 712, Wuhan 430064, China.

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.

出版信息

Gels. 2025 Jan 11;11(1):59. doi: 10.3390/gels11010059.


DOI:10.3390/gels11010059
PMID:39852030
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11764909/
Abstract

Protein-based hydrogels with stretchability and conductivity have potential applications in wearable electronic devices. However, the development of protein-based biocomposite hydrogels is still limited. In this work, we used natural ferritin to develop a PVA/ferritin biocomposite hydrogel by a repetitive freeze-thaw method. In this biocomposite hydrogel, ferritin, as a nano spring, forms a hydrogen bond with the PVA networks, which reduces the crystallinity of PVA and significantly improves the stretchability of the hydrogel. The fracture strain of the PVA/ferritin hydrogel is 203%, and the fracture stress is 112.2 kPa. The fracture toughness of the PVA/ferritin hydrogel is significantly enhanced to 147.03 kJ/m, more than 3 times that of the PVA hydrogel (39.17 kJ/m). In addition, the free residues and iron ions of ferritin endow the biocomposite hydrogel with enhanced ionic conductivity (0.15 S/m). The strain sensor constructed from this hydrogel shows good sensitivity (gauge factor = 1.7 at 150% strain), accurate real-time resistance response, and good long cyclic working stability when used for joint motion monitoring. The results indicate that a PVA/ferritin biocomposite hydrogel prepared by a facile method has enhanced stretchability and conductivity for flexible strain sensors. This work develops a new method for the preparation of protein-based hydrogels for wearable electronic devices.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4af1/11764909/f03a8bced5e1/gels-11-00059-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4af1/11764909/b831d7e5c75c/gels-11-00059-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4af1/11764909/148f99c61439/gels-11-00059-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4af1/11764909/bfe47e4a51a0/gels-11-00059-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4af1/11764909/4652ad4a6dff/gels-11-00059-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4af1/11764909/17042b6b3d08/gels-11-00059-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4af1/11764909/f03a8bced5e1/gels-11-00059-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4af1/11764909/b831d7e5c75c/gels-11-00059-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4af1/11764909/148f99c61439/gels-11-00059-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4af1/11764909/bfe47e4a51a0/gels-11-00059-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4af1/11764909/4652ad4a6dff/gels-11-00059-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4af1/11764909/17042b6b3d08/gels-11-00059-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4af1/11764909/f03a8bced5e1/gels-11-00059-g006.jpg

相似文献

[1]
Biocomposite Polyvinyl Alcohol/Ferritin Hydrogels with Enhanced Stretchability and Conductivity for Flexible Strain Sensors.

Gels. 2025-1-11

[2]
Nanocage Ferritin Reinforced Polyacrylamide Hydrogel for Wearable Flexible Strain Sensors.

ACS Appl Mater Interfaces. 2022-5-11

[3]
Polyvinyl Alcohol/Graphene Oxide Conductive Hydrogels via the Synergy of Freezing and Salting Out for Strain Sensors.

Sensors (Basel). 2022-4-14

[4]
Ultrastrong and Tough Urushiol-Based Ionic Conductive Double Network Hydrogels as Flexible Strain Sensors.

Polymers (Basel). 2023-7-28

[5]
A multi-model, large range and anti-freezing sensor based on a multi-crosslinked poly(vinyl alcohol) hydrogel for human-motion monitoring.

J Mater Chem B. 2020-12-23

[6]
A porous self-healing hydrogel with an island-bridge structure for strain and pressure sensors.

J Mater Chem B. 2021-1-28

[7]
Multifunctional Self-Healing Dual Network Hydrogels Constructed via Host-Guest Interaction and Dynamic Covalent Bond as Wearable Strain Sensors for Monitoring Human and Organ Motions.

ACS Appl Mater Interfaces. 2021-3-31

[8]
Self-Healing, Self-Adhesive Silk Fibroin Conductive Hydrogel as a Flexible Strain Sensor.

ACS Appl Mater Interfaces. 2021-8-25

[9]
Solution-Processable Conductive Composite Hydrogels with Multiple Synergetic Networks toward Wearable Pressure/Strain Sensors.

ACS Sens. 2021-8-27

[10]
PVA/chitosan-based multifunctional hydrogels constructed through multi-bonding synergies and their application in flexible sensors.

Carbohydr Polym. 2025-2-15

引用本文的文献

[1]
Mechanically Tunable Composite Hydrogel for Multi-Gesture Motion Monitoring.

Biosensors (Basel). 2025-6-27

[2]
Recent Progress of Biomaterial-Based Hydrogels for Wearable and Implantable Bioelectronics.

Gels. 2025-6-9

[3]
Flexible Stretchable Strain Sensor Based on LIG/PDMS for Real-Time Health Monitoring of Test Pilots.

Sensors (Basel). 2025-5-2

本文引用的文献

[1]
Progress in Protein-Based Hydrogels for Flexible Sensors: Insights from Casein.

ACS Sens. 2024-11-22

[2]
Hydrogel-based platforms for site-specific doxorubicin release in cancer therapy.

J Transl Med. 2024-9-30

[3]
Injectable and 3D Extrusion Printable Hydrophilic Silicone-Based Hydrogels for Controlled Ocular Delivery of Ophthalmic Drugs.

ACS Appl Bio Mater. 2024-9-16

[4]
Recent Advances in Poly(vinyl alcohol)-Based Hydrogels.

Polymers (Basel). 2024-7-15

[5]
Enhanced Mechanical Properties of PVA Hydrogel by Low-Temperature Segment Self-Assembly vs. Freeze-Thaw Cycles.

Polymers (Basel). 2023-9-15

[6]
Soft Conductive Hydrogel-Based Electronic Skin for Robot Finger Grasping Manipulation.

Polymers (Basel). 2022-9-20

[7]
High-Stretchability, Ultralow-Hysteresis ConductingPolymer Hydrogel Strain Sensors for Soft Machines.

Adv Mater. 2022-8

[8]
Nanomaterial based PVA nanocomposite hydrogels for biomedical sensing: Advances toward designing the ideal flexible/wearable nanoprobes.

Adv Colloid Interface Sci. 2022-7

[9]
Progress of flexible strain sensors for physiological signal monitoring.

Biosens Bioelectron. 2022-9-1

[10]
Nanocage Ferritin Reinforced Polyacrylamide Hydrogel for Wearable Flexible Strain Sensors.

ACS Appl Mater Interfaces. 2022-5-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索