Suppr超能文献

二维铁电材料:从预测到应用

Two-Dimensional Ferroelectric Materials: From Prediction to Applications.

作者信息

Jiang Shujuan, Wang Yongwei, Zheng Guangping

机构信息

Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China.

Department of Mechanical Engineering, Hong Kong Polytechnic University, Hong Kong 999077, China.

出版信息

Nanomaterials (Basel). 2025 Jan 12;15(2):109. doi: 10.3390/nano15020109.

Abstract

Ferroelectric materials hold immense potential for diverse applications in sensors, actuators, memory storage, and microelectronics. The discovery of two-dimensional (2D) ferroelectrics, particularly ultrathin compounds with stable crystal structure and room-temperature ferroelectricity, has led to significant advancements in the field. However, challenges such as depolarization effects, low Curie temperature, and high energy barriers for polarization reversal remain in the development of 2D ferroelectrics with high performance. In this review, recent progress in the discovery and design of 2D ferroelectric materials is discussed, focusing on their properties, underlying mechanisms, and applications. Based on the work discussed in this review, we look ahead to theoretical prediction for 2D ferroelectric materials and their potential applications, such as the application in nonlinear optics. The progress in theoretical and experimental research could lead to the discovery and design of next-generation nanoelectronic and optoelectronic devices, facilitating the applications of 2D ferroelectric materials in emerging advanced technologies.

摘要

铁电材料在传感器、致动器、存储器和微电子等多种应用中具有巨大潜力。二维(2D)铁电体的发现,特别是具有稳定晶体结构和室温铁电性的超薄化合物,推动了该领域的重大进展。然而,在高性能二维铁电体的开发中,仍存在诸如去极化效应、低居里温度和极化反转的高能垒等挑战。在这篇综述中,讨论了二维铁电材料发现和设计方面的最新进展,重点关注其性质、潜在机制和应用。基于本综述中讨论的工作,我们展望二维铁电材料的理论预测及其潜在应用,如在非线性光学中的应用。理论和实验研究的进展可能会带来下一代纳米电子和光电器件的发现和设计,促进二维铁电材料在新兴先进技术中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7e8/11767678/e6d505042485/nanomaterials-15-00109-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验