Suppr超能文献

中国农村地区尿金属水平与慢性肾功能不全的关联:一项关于性别差异的研究

Association Between Urinary Metal Levels and Chronic Kidney Dysfunction in Rural China: A Study on Sex-Specific Differences.

作者信息

Teng Kaisheng, Guan Qinyi, Liu Qiumei, Mo Xiaoting, Luo Lei, Rong Jiahui, Zhang Tiantian, Jin Wenjia, Zhao Linhai, Wu Songju, Zhang Zhiyong, Qin Jian

机构信息

Department of Environmental and Occupational Health, Guangxi Medical University, Nanning 530021, China.

School of Public Health, Guilin Medical University, 20 Lequn Road, Guilin 541001, China.

出版信息

Toxics. 2025 Jan 14;13(1):55. doi: 10.3390/toxics13010055.

Abstract

BACKGROUND

While current epidemiological studies have documented associations between environmental metals and renal dysfunction, the majority have concentrated on plasma metal levels. The relationship between urinary metal exposure and chronic kidney disease (CKD) remains contentious, particularly within specific demographic groups.

METHODS

This cross-sectional study included 2919 rural Chinese adults recruited between 2018 and 2019. Urine metals were measured by ICP-MS. Least absolute shrinkage and selection operator (LASSO) regression was employed to identify metals significantly associated with CKD. Then, we used binary logistic regression, along with restricted cubic spline (RCS) models, to assess the individual exposure effects of specific metals on CKD. Quantile g-computation, weighted quantile sum regression, and Bayesian kernel machine regression (BKMR) models were applied to evaluate combined effects of metal exposures on CKD. Gender-stratified analyses were also conducted to explore these associations.

RESULTS

LASSO identified seven metals (V, Cu, Rb, Sr, Ba, W, Pb) with significant impacts on CKD. In single-metal models, Cu and W exhibited a positive correlation with CKD, whereas V, Rb, Sr, Ba, and Pb showed significant negative correlations (all < 0.05). RCS analysis revealed nonlinear associations between V, Cu, Ba, Pb, and CKD (all -nonlinear < 0.05). In the multi-metal model, quantile-based g-computation demonstrated a collective negative association with CKD risk for the seven mixed urinary metal exposures (OR (95% CI) = -0.430 (-0.656, -0.204); < 0.001), with V, Rb, Sr, Ba, and Pb contributing to this effect. The WQS model analysis further confirmed this joint negative association (OR (95% CI): -0.885 (-1.083, -0.899); < 0.001), with V as the main contributor. BKMR model analysis indicated an overall negative impact of the metal mixture on CKD risk. Interactions may exist between V and Cu, as well as Cu and Sr and Pb. The female subgroup in the BKMR model demonstrated consistency with the overall association.

CONCLUSIONS

Our study findings demonstrate a negative association between the urinary metal mixture and CKD risk, particularly notable in females. Joint exposure to multiple urinary metals may involve synergistic or antagonistic interactions influencing renal function. Further research is needed to validate these observations and elucidate underlying mechanisms.

摘要

背景

虽然目前的流行病学研究已经记录了环境金属与肾功能障碍之间的关联,但大多数研究都集中在血浆金属水平上。尿金属暴露与慢性肾脏病(CKD)之间的关系仍存在争议,尤其是在特定人群中。

方法

这项横断面研究纳入了2018年至2019年间招募的2919名中国农村成年人。采用电感耦合等离子体质谱法(ICP-MS)测定尿金属含量。采用最小绝对收缩和选择算子(LASSO)回归来识别与CKD显著相关的金属。然后,我们使用二元逻辑回归以及受限立方样条(RCS)模型来评估特定金属对CKD的个体暴露效应。应用分位数g计算、加权分位数和回归以及贝叶斯核机器回归(BKMR)模型来评估金属暴露对CKD的综合影响。还进行了按性别分层的分析以探讨这些关联。

结果

LASSO识别出对CKD有显著影响的七种金属(钒、铜、铷、锶、钡、钨、铅)。在单金属模型中,铜和钨与CKD呈正相关,而钒、铷、锶、钡和铅呈显著负相关(均P<0.05)。RCS分析显示钒、铜、钡、铅与CKD之间存在非线性关联(均非线性P<0.05)。在多金属模型中,基于分位数的g计算表明七种混合尿金属暴露与CKD风险呈总体负相关(比值比(95%置信区间)=-0.430(-0.656,-0.204);P<0.001),其中钒、铷、锶、钡和铅起了作用。WQS模型分析进一步证实了这种联合负相关(比值比(95%置信区间):-0.885(-1.083,-0.899);P<0.001),钒是主要贡献者。BKMR模型分析表明金属混合物对CKD风险有总体负面影响。钒与铜之间以及铜与锶和铅之间可能存在相互作用。BKMR模型中的女性亚组与总体关联一致。

结论

我们的研究结果表明尿金属混合物与CKD风险之间存在负相关,在女性中尤为明显。多种尿金属的联合暴露可能涉及影响肾功能的协同或拮抗相互作用。需要进一步研究来验证这些观察结果并阐明潜在机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2289/11768882/62f63a6c94f4/toxics-13-00055-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验