Wang Zeheng, van der Laan Timothy, Usman Muhammad
Data61, CSIRO, Clayton, VIC, 3168, Australia.
Manufacturing, CSIRO, West Lindfield, NSW, 2070, Australia.
Adv Sci (Weinh). 2025 Apr;12(15):e2411573. doi: 10.1002/advs.202411573. Epub 2025 Jan 23.
The rapid growth of Internet of Things (IoT) devices necessitates efficient data compression techniques to manage the vast amounts of data they generate. Chemiresistive sensor arrays (CSAs), a simple yet essential component in IoT systems, produce large datasets due to their simultaneous multi-sensor operations. Classical principal component analysis (cPCA), a widely used solution for dimensionality reduction, often struggles to preserve critical information in complex datasets. In this study, the self-adaptive quantum kernel (SAQK) PCA is introduced as a complementary approach to enhance information retention. The results show that SAQK PCA outperforms cPCA in various back end machine-learning tasks, particularly in low-dimensional scenarios where quantum bit resources are constrained. Although the overall improvement is modest in some cases, SAQK PCA proves especially effective in preserving group structures within low-dimensional data. These findings underscore the potential of noisy intermediate-scale quantum (NISQ) computers to transform data processing in real-world IoT applications by improving the efficiency and reliability of CSA data compression and readout, despite current qubit limitations.
物联网(IoT)设备的快速增长需要高效的数据压缩技术来管理它们产生的大量数据。化学电阻传感器阵列(CSA)是物联网系统中一个简单但必不可少的组件,由于其多传感器同时运行,会产生大量数据集。经典主成分分析(cPCA)是一种广泛用于降维的解决方案,在复杂数据集中往往难以保留关键信息。在本研究中,引入了自适应量子核(SAQK)主成分分析作为一种补充方法来增强信息保留。结果表明,SAQK主成分分析在各种后端机器学习任务中优于cPCA,特别是在量子比特资源受限的低维场景中。尽管在某些情况下整体改进不大,但SAQK主成分分析在保留低维数据中的组结构方面特别有效。这些发现强调了嘈杂中等规模量子(NISQ)计算机通过提高CSA数据压缩和读出的效率和可靠性来改变现实世界物联网应用中数据处理的潜力,尽管目前存在量子比特限制。