Zhang Yuhang, Wu Xiaofeng, Xu Jiawei, Ning Zihao, Han Xiao
School of Social and Behavioral Science, Nangjing University, Nangjing, RP China.
College of Music, Nanjing Normal University, Nangjing, RP China.
PLoS One. 2025 Jan 24;20(1):e0313065. doi: 10.1371/journal.pone.0313065. eCollection 2025.
This study develops an innovative method for analyzing and clustering tonal trends in Chinese Yue Opera to identify different vocal styles accurately. Linear interpolation is applied to process the time series data of vocal melodies, addressing inconsistent feature dimensions. The second-order difference method extracts tonal trend features. We introduce a fuzzy C-means clustering method enhanced by quantum particle swarm optimization (QPSO) to manage data uncertainties, improving classification accuracy and convergence speed. Additionally, we employ a cross-correlation function to eliminate uncertainties from tonal transition redundancies. We designed a detection algorithm using trend data to validate our clustering method, thereby enhancing the accuracy of the analysis of tonal ranges and potential models. This method detects whether Yue Opera adheres to traditional rhythmic norms and models the regularity of musical tones and vocal patterns. Simulation results reveal that our approach achieves a 91.4% accuracy in classifying vocal styles, surpassing traditional methods and demonstrating its potential for identifying various styles. This research offers technical support for Yue Opera music education and interdisciplinary research. The findings enhance the quality of artistic creation and performance in Yue Opera, ensuring its preservation and development.
本研究开发了一种创新方法,用于分析和聚类中国越剧的音调趋势,以准确识别不同的演唱风格。应用线性插值处理声乐旋律的时间序列数据,解决特征维度不一致的问题。二阶差分法提取音调趋势特征。我们引入了一种由量子粒子群优化(QPSO)增强的模糊C均值聚类方法来处理数据的不确定性,提高分类精度和收敛速度。此外,我们采用互相关函数来消除音调过渡冗余带来的不确定性。我们使用趋势数据设计了一种检测算法来验证我们的聚类方法,从而提高音调范围分析和潜在模型的准确性。该方法检测越剧是否遵循传统节奏规范,并对音调规律和演唱模式的规律性进行建模。仿真结果表明,我们的方法在演唱风格分类中达到了91.4%的准确率,超过了传统方法,展示了其识别各种风格的潜力。本研究为越剧音乐教育和跨学科研究提供了技术支持。研究结果提高了越剧艺术创作和表演的质量,确保了其传承和发展。