Yang Mingyu, Martin Calliope J L, Kowsari Kavin, Jagielska Anna, Van Vliet Krystyn J
Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.
PLoS One. 2025 Jan 24;20(1):e0290521. doi: 10.1371/journal.pone.0290521. eCollection 2025.
Myelination is a key biological process wherein glial cells such as oligodendrocytes wrap myelin around neuronal axons, forming an insulative sheath that accelerates signal propagation down the axon. A major obstacle to understanding myelination is the challenge of visualizing and reproducibly quantifying this inherently three-dimensional process in vitro. To this end, we previously developed artificial axons (AAs), a biocompatible platform consisting of 3D-printed hydrogel-based axon mimics designed to more closely recapitulate the micrometer-scale diameter and sub-kilopascal mechanical stiffness of biological axons. First, we present our platform for fabricating AAs with tunable axon diameter, stiffness, and inter-axonal spacing. Second, we demonstrate that increasing the Young's modulus E or stiffness of polymer comprising the AAs increases the extent of myelin ensheathment by rat oligodendrocytes. Third, we demonstrate that the responses of oligodendrocytes to pro-myelinating compounds are also dependent on axon stiffness, which can affect compounds efficacy and the relative ranking. These results reinforce the importance of studying myelination in mechanically representative environments, and highlight the importance of considering biophysical cues when conducting drug screening studies.
髓鞘形成是一个关键的生物学过程,在此过程中,少突胶质细胞等神经胶质细胞将髓磷脂包裹在神经元轴突周围,形成一个绝缘鞘,加速信号沿轴突的传播。理解髓鞘形成的一个主要障碍是在体外可视化并可重复定量这个本质上三维过程的挑战。为此,我们之前开发了人工轴突(AAs),这是一个生物相容性平台,由基于水凝胶的3D打印轴突模拟物组成,旨在更紧密地重现生物轴突的微米级直径和亚千帕斯卡的机械刚度。首先,我们展示了用于制造具有可调轴突直径、刚度和轴突间距的人工轴突的平台。其次,我们证明,增加构成人工轴突的聚合物的杨氏模量E或刚度会增加大鼠少突胶质细胞对髓鞘的包裹程度。第三,我们证明少突胶质细胞对促髓鞘形成化合物的反应也取决于轴突刚度,这会影响化合物的功效和相对排名。这些结果强化了在具有机械代表性的环境中研究髓鞘形成的重要性,并突出了在进行药物筛选研究时考虑生物物理线索的重要性。