Suppr超能文献

Chalcogen Substitution-Modulated Molecule-Electrode Coupling in Single-Molecule Junctions.

作者信息

Jiang Zitai, Chen Ming, Zhang Shou-Feng, Wang Lin, Liu Xunshan

机构信息

School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.

Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Street, Zhejiang, Hangzhou 310018, China.

出版信息

Langmuir. 2025 Feb 4;41(4):2873-2879. doi: 10.1021/acs.langmuir.4c04760. Epub 2025 Jan 24.

Abstract

Molecule-electrode interfaces play a pivotal role in defining the electron transport properties of molecular electronic devices. While extensive research has concentrated on optimizing molecule-electrode coupling (MEC) involving electrode materials and molecular anchoring groups, the role of the molecular backbone structure in modulating MEC is equally vital. Additionally, it is known that the incorporation of heteroatoms into the molecular backbone notably influences factors such as energy levels and conductive characteristics. In this work, we report a series of molecular wires that are organized in donor-acceptor-donor configurations, with distinct chalcogen substitutions, including oxygen (BOD), sulfur (BTD), and selenium (BSD). We investigated the electron transport properties using the scanning tunneling microscope break junction (STM-BJ) technique. Our results revealed that both the single-molecule conductance and the junction evolution feature are impacted by the heteroatoms in the benzo(chalcogen)diazole cores. Furthermore, current-voltage (-) experiments, combined with theoretical analyses, suggest that MEC plays a dominant role in modulating electron transport behaviors. Overall, our findings provide important insights into the interface-mediated charge transport exerted by chalcogen atoms within molecular devices, thereby enhancing the fundamental comprehension of these critical interactions.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验