Ling Hujing, Yuan Qiang, Sheng Tian, Wang Xun
State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province 550025, PR China.
State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province 550025, PR China.
J Colloid Interface Sci. 2025 May;685:371-381. doi: 10.1016/j.jcis.2025.01.180. Epub 2025 Jan 21.
Exploring suitable dual active site and metal-substrate interface effect is essential for designing efficient and robust electrocatalysts across a wide pH range for the hydrogen evolution reaction (HER). Herein, alloyed platinum-ruthenium clusters supported on nanosheet-assembled molybdenum carbide microflowers (PtRu/MoC) are reported as efficient pH-universal electrocatalysts for HER. Due to dual active site and metal-substrate interface effect, the optimized PtRu/MoC electrocatalyst exhibits extremely low overpotentials (η) of 9, 19, and 33 mV to deliver 10 mA cm in 0.5 M HSO, 1.0 M KOH, and 1.0 M phosphate buffered electrolytes (PBS), outperforming the benchmark Pt electrocatalyst. In addition, PtRu/MoC achieves excellent stability of 200 h at a big current density of 500 mA cm in the anionic exchange membrane water electrolyzer. Density functional theory (DFT) calculations and in situ Raman spectra reveal that the interaction of PtRu clusters with MoC substrate, while Ru modulates the electron cloud density of Pt, thus accelerating HO dissociation and H* desorption on the surface of PtRu/MoC and thus synergistically enhancing the HER kinetics. The research opens up an efficient strategy to exploit cost-effective, high-performance, and pH-universal HER electrocatalyst while facilitating green hydrogen energy development.
探索合适的双活性位点和金属-底物界面效应对于设计在宽pH范围内高效且稳定的析氢反应(HER)电催化剂至关重要。在此,报道了负载在纳米片组装碳化钼微花(PtRu/MoC)上的合金化铂-钌簇作为HER的高效pH通用电催化剂。由于双活性位点和金属-底物界面效应,优化后的PtRu/MoC电催化剂在0.5 M H₂SO₄、1.0 M KOH和1.0 M磷酸盐缓冲电解质(PBS)中表现出极低的过电位(η),分别为9、19和33 mV以达到10 mA cm⁻²,优于基准Pt电催化剂。此外,PtRu/MoC在阴离子交换膜水电解槽中500 mA cm⁻²的大电流密度下实现了200 h的优异稳定性。密度泛函理论(DFT)计算和原位拉曼光谱表明,PtRu簇与MoC底物之间的相互作用,而Ru调节了Pt的电子云密度,从而加速了PtRu/MoC表面的H₂O解离和H*脱附,进而协同增强了HER动力学。该研究开辟了一种有效的策略,以开发具有成本效益、高性能和pH通用的HER电催化剂,同时促进绿色氢能的发展。