Suppr超能文献

从社交媒体到人工智能:改善对青少年数字伤害的研究。

From social media to artificial intelligence: improving research on digital harms in youth.

作者信息

Mansfield Karen L, Ghai Sakshi, Hakman Thomas, Ballou Nick, Vuorre Matti, Przybylski Andrew K

机构信息

Oxford Internet Institute, University of Oxford, Oxford, UK.

Oxford Internet Institute, University of Oxford, Oxford, UK; Department of Psychological and Behavioural Science, London School of Economics and Political Science, London, UK.

出版信息

Lancet Child Adolesc Health. 2025 Mar;9(3):194-204. doi: 10.1016/S2352-4642(24)00332-8. Epub 2025 Jan 21.

Abstract

In this Personal View, we critically evaluate the limitations and underlying challenges of existing research into the negative mental health consequences of internet-mediated technologies on young people. We argue that identifying and proactively addressing consistent shortcomings is the most effective method for building an accurate evidence base for the forthcoming influx of research on the effects of artificial intelligence (AI) on children and adolescents. Basic research, advice for caregivers, and evidence for policy makers should tackle the challenges that led to the misunderstanding of social media harms. The Personal View has four sections: first, we conducted a critical appraisal of recent reviews regarding effects of technology on children and adolescents' mental health, aimed at identifying limitations in the evidence base; second, we discuss what we think are the most pressing methodological challenges underlying those limitations; third, we propose effective ways to address these limitations, building on robust methodology, with reference to emerging applications in the study of AI and children and adolescents' wellbeing; and lastly, we articulate steps for conceptualising and rigorously studying the ever-shifting sociotechnological landscape of digital childhood and adolescence. We outline how the most effective approach to understanding how young people shape, and are shaped by, emerging technologies, is by identifying and directly addressing specific challenges. We present an approach grounded in interpreting findings through a coherent and collaborative evidence-based framework in a measured, incremental, and informative way.

摘要

在这篇个人观点文章中,我们批判性地评估了现有关于互联网介导技术对年轻人心理健康产生负面影响的研究的局限性及潜在挑战。我们认为,识别并积极应对这些持续存在的不足,是为即将大量涌现的关于人工智能(AI)对儿童和青少年影响的研究建立准确证据基础的最有效方法。基础研究、给照顾者的建议以及为政策制定者提供的证据,都应应对那些导致对社交媒体危害产生误解的挑战。这篇个人观点文章分为四个部分:第一,我们对近期有关技术对儿童和青少年心理健康影响的综述进行了批判性评估,旨在找出证据基础中的局限性;第二,我们讨论了我们认为这些局限性背后最紧迫的方法学挑战;第三,我们基于可靠的方法学,参考人工智能与儿童和青少年福祉研究中的新兴应用,提出应对这些局限性的有效方法;最后,我们阐述了概念化并严谨研究数字童年和青少年时期不断变化的社会技术格局的步骤。我们概述了理解年轻人如何塑造并受新兴技术影响的最有效方法,是识别并直接应对具体挑战。我们提出一种基于通过连贯且协作的循证框架,以审慎、渐进且信息丰富的方式解读研究结果的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验