Suppr超能文献

机器学习驱动的拉曼光谱:糖尿病肾病脂质谱分析的一种新方法。

Machine learning-driven Raman spectroscopy: A novel approach to lipid profiling in diabetic kidney disease.

作者信息

Kryska Adrianna, Sawic Magdalena, Depciuch Joanna, Sosnowski Piotr, Szałaj Klaudia, Paja Wiesław, Khalavka Maryna, Sroka-Bartnicka Anna

机构信息

Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland.

Institute of Nuclear Physics, Polish Academy of Sciences, Walerego Eljasza - Radzikowskiego 152, 31-342 Kraków, Poland; Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland.

出版信息

Nanomedicine. 2025 Feb;64:102804. doi: 10.1016/j.nano.2025.102804. Epub 2025 Jan 22.

Abstract

Diabetes mellitus is a chronic metabolic disease that increasingly affects people every year. It is known that with its progression and poor management, metabolic changes can lead to organ dysfunctions, including kidneys. The study aimed to combine Raman spectroscopy and biochemical lipid profiling, complemented by machine learning (ML) techniques to evaluate chemical composition changes in kidneys induced by Type 2 Diabetes mellitus (T2DM). Raman spectroscopy identified significant differences in lipid content and specific molecular vibrations, with the 1777 cm band emerging as a potential spectroscopic marker for diabetic kidney damage. The integration of ML algorithms improved the analysis, providing high accuracy, selectivity, and specificity in detecting these changes. Moreover, lipids metabolic profiling revealed distinct variations in the concentration of 11 phosphatydylocholines and 9 acyl-alkylphosphatidylcholines glycerophospholipids. Importantly, the correlation between Raman data and lipids metabolic profiling differed for control and T2DM groups. This study underscores the combined power of Raman spectroscopy and ML in offering a low-cost, fast, precise, and comprehensive approach to diagnosing and monitoring diabetic nephropathy, paving the way for improved clinical interventions. However, taking into account small number of data related to ethical committee approvals, the study should be verified on a larger number of cases.

摘要

糖尿病是一种慢性代谢疾病,每年影响的人数日益增多。众所周知,随着病情进展以及管理不善,代谢变化会导致包括肾脏在内的器官功能障碍。该研究旨在将拉曼光谱法与生化脂质分析相结合,并辅以机器学习(ML)技术,以评估2型糖尿病(T2DM)诱发的肾脏化学成分变化。拉曼光谱法确定了脂质含量和特定分子振动的显著差异,1777厘米波段成为糖尿病肾损伤的潜在光谱标志物。ML算法的整合改进了分析,在检测这些变化方面提供了高精度、高选择性和高特异性。此外,脂质代谢分析揭示了11种磷脂酰胆碱和9种酰基烷基磷脂酰胆碱甘油磷脂浓度的明显差异。重要的是,对照组和T2DM组的拉曼数据与脂质代谢分析之间的相关性有所不同。本研究强调了拉曼光谱法和ML相结合在提供低成本、快速、精确和全面的糖尿病肾病诊断及监测方法方面的强大作用,为改进临床干预措施铺平了道路。然而,考虑到与伦理委员会批准相关的数据量较少,该研究应在更多病例上进行验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验