Mundstock Dias Glaecir Roseni, Freitas Ferreira Andrea Claudia, Miranda-Alves Leandro, Graceli Jones Bernardes, Pires de Carvalho Denise
Programa de Pós-graduação em Medicina (Endocrinologia), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
Programa de Pós-graduação em Medicina (Endocrinologia), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Programa de Pós-graduação em Ciências Biológicas (Fisiologia), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Núcleo Interdisciplinar NUMPEX, Campus Duque de Caxias, Universidade Federal do Rio de Janeiro, Duque de Caxias, RJ, Brazil.
Mol Cell Endocrinol. 2025 Apr 1;599:112467. doi: 10.1016/j.mce.2025.112467. Epub 2025 Jan 22.
The large-scale industrial production characteristic of the last century led to an increase in man-made compounds and mobilization of natural compounds, many of which can accumulate in the environment and organisms due to their bioaccumulation and biomagnification properties. The endocrine system is especially vulnerable to these compounds that are known as endocrine disruptor chemicals (EDCs). Thyroid hormones (THs) are essential for normal development and growth, besides being the main regulators of basal metabolic rate. Thus, compounds able to affect THs synthesis, transport, and action could produce important deleterious effects, impacting the development of metabolic and endocrine diseases. Herein, we will review the main effects of EDCs on the thyroid axis, with special emphasis on the widely used substances bisphenol A (BPA), employed in the synthesis of polycarbonate plastics and epoxy resins; tributyltin (TBT), an organotin chemical substance widely used in several agro-industrial applications; and lead (Pb), a ubiquitous environmental and occupational polluting heavy metal. Exposure to these EDCs occurs mainly from the ingestion of contaminated food and beverages. Furthermore, there are few epidemiological studies evaluating human risk, and experimental studies employ different exposure models, making it difficult to integrate results. However, even low doses of these EDCs warn of thyrotoxicity. Since THs homeostasis is essential for health and humans are increasingly being exposed to EDCs, it is important to clarify which substances might act as thyroid hormone system disrupting chemicals and how they act in order to try to overcome their deleterious effects and limit the exposure to these compounds.
上世纪大规模工业化生产的特点导致人造化合物增多以及天然化合物的迁移,其中许多化合物由于具有生物累积性和生物放大性,能够在环境和生物体中蓄积。内分泌系统对这些被称为内分泌干扰化学物(EDCs)的化合物尤为敏感。甲状腺激素(THs)除了是基础代谢率的主要调节因子外,对正常发育和生长也至关重要。因此,能够影响甲状腺激素合成、运输和作用的化合物可能会产生重要的有害影响,进而影响代谢和内分泌疾病的发展。在此,我们将综述内分泌干扰化学物对甲状腺轴的主要影响,特别关注广泛使用的物质双酚A(BPA),其用于合成聚碳酸酯塑料和环氧树脂;三丁基锡(TBT),一种广泛用于多种农业工业应用的有机锡化学物质;以及铅(Pb),一种普遍存在的环境和职业污染重金属。接触这些内分泌干扰化学物主要源于摄入受污染的食品和饮料。此外,评估人类风险的流行病学研究较少,实验研究采用不同的暴露模型,使得结果难以整合。然而,即使是低剂量的这些内分泌干扰化学物也会引发甲状腺毒性警示。由于甲状腺激素稳态对健康至关重要,且人类越来越多地接触到内分泌干扰化学物,因此明确哪些物质可能作为甲状腺激素系统干扰化学物以及它们如何起作用,对于试图克服其有害影响并限制对这些化合物的接触非常重要。