Suppr超能文献

钯纳米颗粒修饰氮化镓纳米线在海水中实现高效空穴提取及*OH缓解用于太阳能驱动氢气和过氧化氢生成

Efficient Hole Extraction and *OH Alleviation by Pd Nanoparticles on GaN Nanowires in Seawater for Solar-Driven H and HO Generation.

作者信息

Salman Nasir Muhammad, Zhao Ying, Ye Haotian, Wang Tao, Sheng Bowen, Song Jun, Li Jinglin, Wang Ping, Wang Xinqiang, Huang Zhen, Zhou Baowen

机构信息

Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.

Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, QC H3 A0 C9, Canada.

出版信息

Angew Chem Int Ed Engl. 2025 Mar 3;64(10):e202420796. doi: 10.1002/anie.202420796. Epub 2025 Feb 11.

Abstract

Photocatalytic seawater splitting into hydrogen and hydrogen peroxide (2HO→H↑ + HO) offers an ultimate solution for simultaneously generating green fuel and value-added chemicals by the two most earth-abundant resources i.e., solar energy and natural seawater. In this study, Pd nanoparticles are integrated with one-dimensional gallium nitride nanowires (Pd NPs/GaN NWs) on a silicon wafer to produce H and HO from seawater powered by sunlight. In situ spectroscopic characterizations combined with computational investigations reveal that in this nanohybrid, Pd NPs function as an efficient hole extractor and *OH alleviator during photocatalysis. Meanwhile, the chloride ions in seawater facilitate the HO→ H + HO conversion by improving the charge dynamics and lowering the energy barrier of the key *OH self-coupling step over Pd sites in the catalytic system. As a result, the photocatalyst delivers an appreciable hydrogen production rate of 2.5 mmol⋅cm⋅h with a light-to-hydrogen (LTH) efficiency of 4.38 % in natural seawater under concentrated light irradiation of 3 W⋅cm without sacrificial agents and external energies. Notably, the water oxidation reaction produces 300 μmol/L of valuable HO over a duration of 2 hours under a light intensity of 3 W/cm using a 20 mL water sample, achieving a light-to-chemical efficiency of 0.53 %. The photocatalyst shows excellent stability for up to 60 hours with a considerable turnover number of 1.42×10 moles H per mole of Pd. The outdoor test further suggests the great potential for solar-driven seawater splitting into green fuels and chemicals.

摘要

光催化海水分解成氢气和过氧化氢(2H₂O→H₂↑ + H₂O₂)为利用太阳能和天然海水这两种地球上储量丰富的资源同时生产绿色燃料和高附加值化学品提供了终极解决方案。在本研究中,钯纳米颗粒与硅片上的一维氮化镓纳米线集成在一起(Pd NPs/GaN NWs),以利用阳光从海水中产生氢气和过氧化氢。原位光谱表征与计算研究相结合表明,在这种纳米杂化物中,钯纳米颗粒在光催化过程中起到高效空穴提取器和OH缓解剂的作用。同时,海水中的氯离子通过改善电荷动力学并降低催化体系中钯位点上关键OH自偶联步骤的能垒,促进了H₂O₂→H₂ + O₂的转化。结果,在3 W·cm⁻²的聚光照射下,该光催化剂在天然海水中无需牺牲剂和外部能量,可实现可观的产氢速率2.5 mmol·cm⁻²·h,光解水制氢(LTH)效率为4.38%。值得注意的是,在3 W/cm²的光强下,使用20 mL水样,水氧化反应在2小时内产生300 μmol/L有价值的H₂O₂,实现了0.53%的光化学效率。该光催化剂在长达60小时内表现出优异的稳定性,每摩尔钯的周转数高达1.42×10⁻³摩尔氢气。户外测试进一步表明了太阳能驱动海水分解为绿色燃料和化学品的巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验