Suppr超能文献

将电子健康记录与生物医学知识图谱相连接,以关联特应性皮炎的临床表型和分子内型。

Connecting electronic health records to a biomedical knowledge graph to link clinical phenotypes and molecular endotypes in atopic dermatitis.

作者信息

Frau Francesca, Loustalot Paul, Törnqvist Margaux, Temam Nina, Cupe Jean, Montmerle Martin, Augé Franck

机构信息

Sanofi R&D, Development Real World Evidence, 65926, Frankfurt am Main, Germany.

Quinten Health, 8 rue Vernier, 75017, Paris, France.

出版信息

Sci Rep. 2025 Jan 24;15(1):3082. doi: 10.1038/s41598-024-78794-5.

Abstract

Precision medicine is defined by the U.S. Food & Drug Administration as "an innovative approach to tailoring disease prevention and treatment that considers differences in people's genes, environments, and lifestyles". To succeed in providing personalized medicine to patients, it will be necessary to integrate medical, biological and molecular data in order to identify all complex disease subtypes and understand their pathobiological mechanism. Since biomedical knowledge graphs (BKGs) are limited to the integration of prior knowledge data and do not integrate real-world data (RWD) that would allow for the incorporation of patient level information, we propose a first step towards using RWD, BKGs and graph machine learning (ML) to enable a fully integrated precision medicine strategy. In this study, we established a link between RWD and a BKG. Our methodology introduced a novel patient representation using graph ML applied to the BKG. This approach facilitated the interpretation and extension of ML findings, particularly in disease subtype identification with molecular data contained in the BKG. We applied our innovative methodology to deepen our understanding of atopic dermatitis, a condition with a complex underlying pathophysiological mechanism. Through our analysis, we identified seven subgroups of patients each characterized by clinical and genomic characteristics.

摘要

美国食品药品监督管理局将精准医学定义为“一种创新的疾病预防和治疗方法,它考虑了人们基因、环境和生活方式的差异”。为了成功地为患者提供个性化医疗,有必要整合医学、生物学和分子数据,以识别所有复杂的疾病亚型并了解其病理生物学机制。由于生物医学知识图谱(BKG)仅限于整合先验知识数据,并未整合能够纳入患者层面信息的真实世界数据(RWD),因此我们提出迈向利用真实世界数据、生物医学知识图谱和图机器学习(ML)来实现完全整合的精准医学策略的第一步。在本研究中,我们建立了真实世界数据与生物医学知识图谱之间的联系。我们的方法引入了一种使用应用于生物医学知识图谱的图机器学习的新型患者表征。这种方法促进了机器学习结果的解释和扩展,特别是在利用生物医学知识图谱中包含的分子数据进行疾病亚型识别方面。我们应用创新方法来加深对特应性皮炎的理解,这是一种具有复杂潜在病理生理机制的疾病。通过我们的分析,我们识别出了七个患者亚组,每个亚组都具有临床和基因组特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eccc/11760951/540fbc5a7750/41598_2024_78794_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验