Suppr超能文献

一种用于通过视网膜成像进行无创糖尿病肾病诊断的多模态变压器系统。

A multimodal transformer system for noninvasive diabetic nephropathy diagnosis via retinal imaging.

作者信息

Dong Zheyi, Wang Xiaofei, Pan Sai, Weng Taohan, Chen Xiaoniao, Jiang Shuangshuang, Li Ying, Wang Zonghua, Cao Xueying, Wang Qian, Chen Pu, Jiang Lai, Cai Guangyan, Zhang Li, Wang Yong, Yang Jinkui, He Yani, Lin Hongli, Wu Jie, Tang Li, Zhou Jianhui, Li Shengxi, Li Zhaohui, Fu Yibing, Yu Xinyue, Geng Yanqiu, Zhang Yingjie, Wang Liqiang, Xu Mai, Chen Xiangmei

机构信息

Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China.

Nephrology Institute of the Chinese People's Liberation Army, Beijing, China.

出版信息

NPJ Digit Med. 2025 Jan 24;8(1):50. doi: 10.1038/s41746-024-01393-1.

Abstract

Differentiating between diabetic nephropathy (DN) and non-diabetic renal disease (NDRD) without a kidney biopsy remains a major challenge, often leading to missed opportunities for targeted treatments that could greatly improve NDRD outcomes. To reform the traditional biopsy-all diagnostic paradigm and avoid unnecessary biopsy, we developed a transformer-based deep learning (DL) system for detecting DN and NDRD upon non-invasive multi-modal data of fundus images and clinical characteristics. Our Trans-MUF achieved an AUC of 0.980 (95% CI: 0.979 to 0.980) over the internal retrospective set and also had superior generalizability over a prospective dataset (AUC: 0.989, 95% CI: 0.987 to 0.990) and a multicenter, cross-machine and multi-operator dataset (AUC: 0.932, 95% CI: 0.931 to 0.939). Moreover, the nephrologists' diagnosis accuracy can be improved by 21%, through visualization assistance of the DL system. This paper lays a foundation for automatically differentiating DN and NDRD without biopsy. (Registry name: Correlation Study Between Clinical Phenotype and Pathology of Type 2 Diabetic Nephropathy. ID: NCT03865914. Date: 2017-11-30).

摘要

在不进行肾活检的情况下区分糖尿病肾病(DN)和非糖尿病性肾脏疾病(NDRD)仍然是一项重大挑战,这常常导致错过靶向治疗的机会,而这些治疗本可极大改善NDRD的治疗结果。为了改革传统的活检 - 全诊断模式并避免不必要的活检,我们开发了一种基于Transformer的深度学习(DL)系统,用于根据眼底图像的非侵入性多模态数据和临床特征来检测DN和NDRD。我们的Trans - MUF在内部回顾性数据集上的AUC为0.980(95% CI:0.979至0.980),并且在前瞻性数据集(AUC:0.989,95% CI:0.987至0.990)以及多中心、跨机器和多操作员数据集(AUC:0.932,95% CI:0.931至0.939)上也具有卓越的泛化能力。此外,通过DL系统的可视化辅助,肾脏科医生的诊断准确率可提高21%。本文为无需活检自动区分DN和NDRD奠定了基础。(注册名称:2型糖尿病肾病临床表型与病理的相关性研究。ID:NCT03865914。日期:2017年11月30日)

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10e0/11759696/0b90e9155e05/41746_2024_1393_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验