Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, United Kingdom.
Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom.
Comput Med Imaging Graph. 2022 Jan;95:102026. doi: 10.1016/j.compmedimag.2021.102026. Epub 2021 Dec 13.
Automatic segmentation methods are an important advancement in medical image analysis. Machine learning techniques, and deep neural networks in particular, are the state-of-the-art for most medical image segmentation tasks. Issues with class imbalance pose a significant challenge in medical datasets, with lesions often occupying a considerably smaller volume relative to the background. Loss functions used in the training of deep learning algorithms differ in their robustness to class imbalance, with direct consequences for model convergence. The most commonly used loss functions for segmentation are based on either the cross entropy loss, Dice loss or a combination of the two. We propose the Unified Focal loss, a new hierarchical framework that generalises Dice and cross entropy-based losses for handling class imbalance. We evaluate our proposed loss function on five publicly available, class imbalanced medical imaging datasets: CVC-ClinicDB, Digital Retinal Images for Vessel Extraction (DRIVE), Breast Ultrasound 2017 (BUS2017), Brain Tumour Segmentation 2020 (BraTS20) and Kidney Tumour Segmentation 2019 (KiTS19). We compare our loss function performance against six Dice or cross entropy-based loss functions, across 2D binary, 3D binary and 3D multiclass segmentation tasks, demonstrating that our proposed loss function is robust to class imbalance and consistently outperforms the other loss functions. Source code is available at: https://github.com/mlyg/unified-focal-loss.
自动分割方法是医学图像分析的重要进展。机器学习技术,特别是深度神经网络,是大多数医学图像分割任务的最新技术。在医学数据集,病变往往相对于背景占据相当小的体积,因此类不平衡问题是一个重大挑战。在训练深度学习算法中使用的损失函数在对类不平衡的鲁棒性方面存在差异,这对模型的收敛有直接影响。用于分割的最常用的损失函数基于交叉熵损失、Dice 损失或两者的组合。我们提出了统一焦点损失,这是一种新的分层框架,它推广了基于 Dice 和交叉熵的损失函数,以处理类不平衡问题。我们在五个公开的、类不平衡的医学成像数据集上评估了我们提出的损失函数:CVC-ClinicDB、用于血管提取的数字视网膜图像 (DRIVE)、2017 年乳腺超声 (BUS2017)、2020 年脑肿瘤分割 (BraTS20) 和 2019 年肾脏肿瘤分割 (KiTS19)。我们将我们的损失函数性能与六个基于 Dice 或交叉熵的损失函数进行了比较,涵盖了 2D 二进制、3D 二进制和 3D 多类分割任务,证明了我们提出的损失函数对类不平衡具有鲁棒性,并且始终优于其他损失函数。源代码可在:https://github.com/mlyg/unified-focal-loss。