Suppr超能文献

使用常规免疫组化标志物预测HER2阴性乳腺癌患者新辅助化疗后的病理完全缓解情况。

Prediction of pathological complete response after neoadjuvant chemotherapy for HER2-negative breast cancer patients with routine immunohistochemical markers.

作者信息

Häberle Lothar, Erber Ramona, Gass Paul, Hein Alexander, Niklos Melitta, Volz Bernhard, Hack Carolin C, Schulz-Wendtland Rüdiger, Huebner Hanna, Goossens Chloë, Christgen Matthias, Dörk Thilo, Park-Simon Tjoung-Won, Schneeweiss Andreas, Untch Michael, Nekljudova Valentina, Loibl Sibylle, Hartmann Arndt, Beckmann Matthias W, Fasching Peter A

机构信息

Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany.

Biostatistics Unit, Department of Gynecology and Obstetrics, Erlangen University Hospital, Erlangen, Germany.

出版信息

Breast Cancer Res. 2025 Jan 24;27(1):13. doi: 10.1186/s13058-025-01960-8.

Abstract

BACKGROUND

Pathological complete response (pCR) is an established surrogate marker for prognosis in patients with breast cancer (BC) after neoadjuvant chemotherapy. Individualized pCR prediction based on clinical information available at biopsy, particularly immunohistochemical (IHC) markers, may help identify patients who could benefit from preoperative chemotherapy.

METHODS

Data from patients with HER2-negative BC who underwent neoadjuvant chemotherapy from 2002 to 2020 (n = 1166) were used to develop multivariable prediction models to estimate the probability of pCR (pCR-prob). The most precise model identified using cross-validation was implemented in an online calculator and a nomogram. Associations among pCR-prob, prognostic IHC3 distant recurrence and disease-free survival were studied using Cox regression and Kaplan-Meier analyses. The model's utility was further evaluated in independent external validation cohorts.

RESULTS

273 patients (23.4%) achieved a pCR. The most precise model had across-validated area under the curve (AUC) of 0.84, sensitivity of 0.82, and specificity of 0.71. External validation yielded AUCs between 0.75 (95% CI, 0.70-0.81) and 0.83 (95% CI, 0.78-0.87). The higher the pCR-prob, the greater the prognostic impact of pCR status (presence/absence): hazard ratios decreased from 0.55 (95% central range, 0.07-1.77) at 0% to 0.20 (0.11-0.31) at 50% pCR-prob. Combining pCR-prob and IHC3 score further improved the precision of disease-free survival prognosis.

CONCLUSIONS

A pCR prediction model for neoadjuvant therapy decision-making was established. Combining pCR and recurrence prediction allows identification of not only patients who benefit most from neoadjuvant chemotherapy, but also patients with a very unfavorable prognosis for whom alternative treatment strategies should be considered.

摘要

背景

病理完全缓解(pCR)是新辅助化疗后乳腺癌(BC)患者预后的既定替代标志物。基于活检时可用的临床信息,特别是免疫组化(IHC)标志物进行个体化pCR预测,可能有助于识别可从术前化疗中获益的患者。

方法

使用2002年至2020年接受新辅助化疗的HER2阴性BC患者的数据(n = 1166)来开发多变量预测模型,以估计pCR概率(pCR-prob)。使用交叉验证确定的最精确模型应用于在线计算器和列线图。使用Cox回归和Kaplan-Meier分析研究pCR-prob、预后性IHC3远处复发和无病生存之间的关联。在独立的外部验证队列中进一步评估该模型的效用。

结果

273例患者(23.4%)达到pCR。最精确模型的交叉验证曲线下面积(AUC)为0.84,敏感性为0.82,特异性为0.71。外部验证得出的AUC在0.75(95%CI,0.70 - 0.81)至0.83(95%CI,0.78 - 0.87)之间。pCR-prob越高,pCR状态(存在/不存在)的预后影响越大:风险比从pCR-prob为0%时的0.55(95%中心范围,0.07 - 1.77)降至pCR-prob为50%时的0.20(0.11 - 0.31)。结合pCR-prob和IHC3评分进一步提高了无病生存预后的精确度。

结论

建立了用于新辅助治疗决策的pCR预测模型。结合pCR和复发预测不仅可以识别出从新辅助化疗中获益最大的患者,还可以识别出预后非常不利、应考虑替代治疗策略的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39a3/11759445/3a00509249ee/13058_2025_1960_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验