Suppr超能文献

机器学习与多组学整合以揭示酱香型堆积发酵异常中的生物标志物和微生物群落组装差异

Machine Learning and Multi-Omics Integration to Reveal Biomarkers and Microbial Community Assembly Differences in Abnormal Stacking Fermentation of Sauce-Flavor .

作者信息

Li Shuai, Han Yueran, Yan Ming, Qiu Shuyi, Lu Jun

机构信息

College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang 550025, China.

Guizhou Guotai Distillery Co., Ltd., Renhuai 564501, China.

出版信息

Foods. 2025 Jan 14;14(2):245. doi: 10.3390/foods14020245.

Abstract

Stacking fermentation is critical in sauce-flavor production, but winter production often sees abnormal fermentations, like Waistline and Sub-Temp fermentation, affecting yield and quality. This study used three machine learning models (Logistic Regression, KNN, and Random Forest) combined with multi-omics (metagenomics and flavoromics) to develop a classification model for abnormal fermentation. SHAP analysis identified 13 Sub-Temp Fermentation and 9 Waistline microbial biomarkers, along with 9 Sub-Temp Fermentation and 12 Waistline flavor biomarkers. and are key for normal fermentation, while and are critical in abnormal cases. Excessive acid and ester markers caused unbalanced aromas in abnormal fermentations. Additionally, ecological models reveal the bacterial community assembly in abnormal fermentations was influenced by stochastic factors, while the fungal community assembly was influenced by deterministic factors. RDA analysis shows that moisture significantly drove Sub-Temp fermentation. Differential gene analysis and KEGG pathway enrichment identify metabolic pathways for flavor markers. This study provides a theoretical basis for regulating stacking fermentation and ensuring quality.

摘要

堆积发酵在酱香型白酒生产中至关重要,但冬季生产时常常出现异常发酵情况,如“中挺”和“亚高温”发酵,影响产量和品质。本研究使用三种机器学习模型(逻辑回归、K近邻和随机森林)结合多组学(宏基因组学和风味组学)来开发异常发酵的分类模型。SHAP分析确定了13个“亚高温”发酵和9个“中挺”发酵的微生物生物标志物,以及9个“亚高温”发酵和12个“中挺”发酵的风味生物标志物。[具体物质1]和[具体物质2]对正常发酵至关重要,而[具体物质3]和[具体物质4]在异常情况下起关键作用。异常发酵中过量的酸和酯类标志物导致香气失衡。此外,生态模型表明,异常发酵中细菌群落的组装受随机因素影响,而真菌群落的组装受确定性因素影响。冗余分析表明水分显著推动了“亚高温”发酵。差异基因分析和KEGG通路富集确定了风味标志物的代谢途径。本研究为调控堆积发酵和保证[产品]品质提供了理论依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dbf/11765235/4334e613428d/foods-14-00245-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验