Yang Liang, Xian Chun, Li Shuai, Wang Ye, Wu Xinying, Chen Qingcai, Zhao Wenwu, Zhao Cheng, Li Xiaobo, He Junjun, Chen Renyuan, Zhang Chunlin
School of Brewing Engineering, Moutai Institute, Renhuai 564501, China.
Kweichow Moutai Group, Renhuai 564501, China.
Food Chem X. 2025 May 15;28:102555. doi: 10.1016/j.fochx.2025.102555. eCollection 2025 May.
Maotai-flavor Baijiu, a traditional Chinese liquor produced via solid-state fermentation, exhibits diverse base Baijiu types due to variations in fermentation rounds, styles, and grades. While crucial for flavor complexity, current manual identification methods hinder blending efficiency and quality control. This study employed GC-FID and machine learning to analyze 410 base Baijiu samples. Decision Tree (74.36 %), XGBoost (92.9 %), and Random Forest (62.3 %) emerged as optimal classifiers for fermentation rounds, typical styles, and Chuntian grades, respectively. SHAP analysis revealed: (1) esters as primary markers for fermentation rounds, (2) ester-trimethylbutanol combinations for grade differentiation, and (3) multi-compound signatures (butyric acid, tetramethylpyrazine, 2-butanol et al.,) for style discrimination. Notably, marker compounds' flavor properties - beyond mere concentration - critically influenced their discriminative power, as evidenced by correlations with nine sensory dimensions.
酱香型白酒是一种通过固态发酵生产的中国传统白酒,由于发酵轮次、风格和等级的不同,呈现出多种基酒类型。虽然这对风味复杂性至关重要,但目前的人工识别方法阻碍了勾兑效率和质量控制。本研究采用气相色谱-氢火焰离子化检测器(GC-FID)和机器学习对410个基酒样本进行分析。决策树(74.36%)、极端梯度提升(XGBoost,92.9%)和随机森林(62.3%)分别成为发酵轮次、典型风格和春天等级的最佳分类器。SHAP分析表明:(1)酯类是发酵轮次的主要标志物;(2)酯类与三甲基丁醇的组合用于等级区分;(3)多种化合物特征(丁酸、四甲基吡嗪、2-丁醇等)用于风格辨别。值得注意的是,标志物化合物的风味特性——不仅仅是浓度——对其辨别能力至关重要,与九个感官维度的相关性证明了这一点。