Kara Miklós, Lakner Zoltán, Tamás László, Molnár Viktória
Department of Oto-Rhino-Laryngology and Head-Neck Surgery, Semmelweis University, Budapest, Hungary.
Hungarian University of Agriculture and Life Sciences, Budapest, Hungary.
Eur Arch Otorhinolaryngol. 2025 Apr 12. doi: 10.1007/s00405-025-09377-x.
The gold standard diagnostic modality of Obstructive Sleep Apnea (OSA) is polysomnography (PSG), which is resource-intensive, requires specialized facilities, and may not be accessible to all patients. There is a growing body of research exploring the potential of artificial intelligence (AI) to offer more accessible, efficient, and cost-effective alternatives for the diagnosis of OSA.
We conducted a scoping review of studies applying AI techniques to diagnose and assess OSA in adult populations. A comprehensive search was performed in the Web of Science database using terms related to "obstructive sleep apnea," "artificial intelligence," "machine learning," and related approaches.
A total of 344 articles met the inclusion criteria. The findings highlight various methodologies of disease evaluation, including binary classification distinguishing between OSA-positive and OSA-negative individuals in 118 articles, OSA event detection in 211 articles, severity evaluation in 38 articles, topographic diagnostic evaluation in 8 articles, and apnea-hypopnea index (AHI) estimation in 26 articles. 40 distinct types of data sources were identified. The three most prevalent data types were electrocardiography (ECG), used in 108 articles, photoplethysmography (PPG) in 62 articles, and respiratory effort and body movement in 44 articles. The AI techniques most frequently applied were convolutional neural networks (CNNs) in 104 articles, support vector machines (SVMs) in 91 articles, and K-Nearest Neighbors (KNN) in 57 articles. Of these studies, 229 used direct patient recruitment, and 115 utilized existing datasets.
While AI demonstrates substantial potential with high accuracy rates in certain studies, challenges remain such as model transparency, validation across diverse populations, and seamless integration into clinical practice. These challenges may stem from factors such as overfitting to specific datasets, limited generalizability, and the need for standardized protocols in clinical settings.
阻塞性睡眠呼吸暂停(OSA)的金标准诊断方法是多导睡眠图(PSG),该方法资源密集,需要专门设施,且并非所有患者都能使用。越来越多的研究正在探索人工智能(AI)的潜力,以提供更易获得、高效且具成本效益的OSA诊断替代方法。
我们对应用AI技术诊断和评估成年人群OSA的研究进行了范围综述。在Web of Science数据库中使用与“阻塞性睡眠呼吸暂停”“人工智能”“机器学习”及相关方法相关的术语进行了全面检索。
共有344篇文章符合纳入标准。研究结果突出了疾病评估的各种方法,包括在118篇文章中区分OSA阳性和OSA阴性个体的二元分类、211篇文章中的OSA事件检测、38篇文章中的严重程度评估、8篇文章中的地形诊断评估以及26篇文章中的呼吸暂停低通气指数(AHI)估计。确定了40种不同类型的数据来源。三种最常见的数据类型是心电图(ECG),108篇文章中使用;光电容积脉搏波描记法(PPG),62篇文章中使用;呼吸努力和身体运动,44篇文章中使用。最常应用的AI技术是104篇文章中的卷积神经网络(CNN)、91篇文章中的支持向量机(SVM)和57篇文章中的K近邻算法(KNN)。在这些研究中,229项采用直接患者招募,115项利用现有数据集。
虽然AI在某些研究中显示出具有高准确率的巨大潜力,但挑战依然存在,如模型透明度、不同人群的验证以及无缝融入临床实践。这些挑战可能源于对特定数据集的过度拟合、有限的可推广性以及临床环境中对标准化协议的需求等因素。