Suppr超能文献

用于阻断-锁定-杀灭艾滋病毒根除策略的磁电细胞外囊泡潜伏期靶向(MELT)纳米疗法

Magnetoelectric Extracellular Vesicle Latency-Targeting (MELT) Nanotherapeutic for the Block-Lock-and-Kill HIV Eradication Strategy.

作者信息

Andre Mickensone, Kolishetti Nagesh, Yndart Adriana, Vashist Arti, Nair Madhavan, Raymond Andrea D

机构信息

Herbert Wertheim College of Medicine, Cellular and Molecular Medicine, Florida International University, Miami, FL 33199, USA.

Institute of Neuroimmune Pharmacology, Florida International University, Miami, FL 33199, USA.

出版信息

Biomedicines. 2025 Jan 9;13(1):147. doi: 10.3390/biomedicines13010147.

Abstract

BACKGROUND

Human immunodeficiency virus (HIV) establishes latent infections in cellular reservoirs, including microglia. HC69 cells, a microglial model of HIV latency, contain an HIV promoter long terminal repeat (LTR)-GFP reporter and were used for testing the efficacy of a two-step magnetoelectric nanoparticle (MENP) and extracellular vesicle (xEV) latency-targeting (MELT) nanotherapeutic. GFP expression in HC69 at rest is low (GFP), and upon exposure to LTR, transcription-activating agents (i.e., TNF-α) are induced to be high expressing (GFP).

METHODS

The first step of MELT utilized ZL0580, an HIV Tat inhibitor loaded into EVs (80%) via incubation. ZL0580-EVs were taken up by GFP and blocked LTR transcriptional reactivation by 50% and were 90% less toxic than ZL0580 alone. The second step in MELT involved conjugation of monomethyl auristatin E (MMAE) to MENPs. HPLC measurements showed 80% MMAE attachment to MENPs. Flow cytometry-based measurements of the membrane potential indicated that the membranes of GFP HC69 were 60% more polarized than GFP HC69 cells. More MMAE-MENPs were internalized by GFP HC69.

RESULTS

Using a mixed-cell blood-brain barrier (BBB) Transwell model, we demonstrated that 20% of MELT crossed the BBB, was taken up by HC69 cells, and reduced LTR reactivation by 10%.

CONCLUSIONS

Overall, this study demonstrated that MELT can potentially be utilized as a nanotherapeutic to target HIV latency in microglia.

摘要

背景

人类免疫缺陷病毒(HIV)在包括小胶质细胞在内的细胞储存库中建立潜伏感染。HC69细胞是HIV潜伏的小胶质细胞模型,含有HIV启动子长末端重复序列(LTR)-绿色荧光蛋白(GFP)报告基因,用于测试两步磁电纳米颗粒(MENP)和细胞外囊泡(xEV)潜伏靶向(MELT)纳米疗法的疗效。静止状态下HC69细胞中的GFP表达较低(GFP),而在暴露于LTR时,转录激活剂(即肿瘤坏死因子-α)会诱导其高表达(GFP)。

方法

MELT的第一步利用ZL0580,一种通过孵育加载到细胞外囊泡(80%)中的HIV反式激活转录蛋白(Tat)抑制剂。ZL0580-细胞外囊泡被GFP摄取,并将LTR转录重新激活阻断50%,且毒性比单独使用ZL0580低90%。MELT的第二步涉及将单甲基奥瑞他汀E(MMAE)与磁电纳米颗粒偶联。高效液相色谱测量显示80%的MMAE附着在磁电纳米颗粒上。基于流式细胞术的膜电位测量表明,GFP HC69细胞的膜极化程度比GFP HC69细胞高60%。更多的MMAE-磁电纳米颗粒被GFP HC69细胞内化。

结果

使用混合细胞血脑屏障(BBB)Transwell模型,我们证明20%的MELT穿过血脑屏障,被HC69细胞摄取,并将LTR重新激活降低了10%。

结论

总体而言,本研究表明MELT有可能作为一种纳米疗法来靶向小胶质细胞中的HIV潜伏感染。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c484/11762476/964cdbc9cdce/biomedicines-13-00147-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验