Suppr超能文献

利用术中超声衍生的放射组学特征对胶质母细胞瘤总生存期进行预后建模:一项多机构研究

Prognostic Modeling of Overall Survival in Glioblastoma Using Radiomic Features Derived from Intraoperative Ultrasound: A Multi-Institutional Study.

作者信息

Cepeda Santiago, Esteban-Sinovas Olga, Singh Vikas, Moiyadi Aliasgar, Zemmoura Ilyess, Del Bene Massimiliano, Barbotti Arianna, DiMeco Francesco, West Timothy Richard, Nahed Brian Vala, Giammalva Giuseppe Roberto, Arrese Ignacio, Sarabia Rosario

机构信息

Department of Neurosurgery, Río Hortega University Hospital, 47014 Valladolid, Spain.

Department of Neurosurgery, Tata Memorial Hospital, TMC and Homi Bhabha National Institute, Mumbai 400012, Maharashtra, India.

出版信息

Cancers (Basel). 2025 Jan 16;17(2):280. doi: 10.3390/cancers17020280.

Abstract

BACKGROUND

Accurate prognostic models are essential for optimizing treatment strategies for glioblastoma, the most aggressive primary brain tumor. While other neuroimaging modalities have demonstrated utility in predicting overall survival (OS), intraoperative ultrasound (iUS) remains underexplored for this purpose. This study aimed to evaluate the prognostic potential of iUS radiomics in glioblastoma patients in a multi-institutional cohort.

METHODS

This retrospective study included patients diagnosed with glioblastoma from the multicenter Brain Tumor Intraoperative (BraTioUS) database. A single 2D iUS slice, showing the largest tumor diameter, was selected for each patient. Radiomic features were extracted and subjected to feature selection, and clinical data were collected. Using a fivefold cross-validation strategy, Cox proportional hazards models were built using radiomic features alone, clinical data alone, and their combination. Model performance was assessed via the concordance index (C-index).

RESULTS

A total of 114 patients met the inclusion criteria, with a mean age of 56.88 years, a median OS of 382 days, and a median preoperative tumor volume of 32.69 cm. Complete tumor resection was achieved in 51.8% of the patients. In the testing cohort, the combined model achieved a mean C-index of 0.87 (95% CI: 0.76-0.98), outperforming the radiomic model (C-index: 0.72, 95% CI: 0.57-0.86) and the clinical model (C-index: 0.73, 95% CI: 0.60-0.87).

CONCLUSIONS

Intraoperative ultrasound relies on acoustic properties for tissue characterization, capturing unique features of glioblastomas. This study demonstrated that radiomic features derived from this imaging modality have the potential to support the development of survival models.

摘要

背景

准确的预后模型对于优化胶质母细胞瘤(最具侵袭性的原发性脑肿瘤)的治疗策略至关重要。虽然其他神经影像学检查方法已证明在预测总生存期(OS)方面有用,但术中超声(iUS)在此方面仍未得到充分探索。本研究旨在评估多机构队列中胶质母细胞瘤患者iUS放射组学的预后潜力。

方法

这项回顾性研究纳入了多中心脑肿瘤术中(BraTioUS)数据库中诊断为胶质母细胞瘤的患者。为每位患者选择一张显示最大肿瘤直径的二维iUS切片。提取放射组学特征并进行特征选择,同时收集临床数据。采用五折交叉验证策略,分别使用单独的放射组学特征、单独的临床数据及其组合构建Cox比例风险模型。通过一致性指数(C指数)评估模型性能。

结果

共有114例患者符合纳入标准,平均年龄56.88岁,OS中位数为382天,术前肿瘤体积中位数为32.69 cm³。51.8%的患者实现了肿瘤全切。在测试队列中,联合模型的平均C指数为0.87(95%CI:0.76 - 0.98),优于放射组学模型(C指数:0.72,95%CI:0.57 - 0.86)和临床模型(C指数:0.73,95%CI:0.60 - 0.87)。

结论

术中超声依靠声学特性对组织进行特征描述,可捕捉胶质母细胞瘤的独特特征。本研究表明,源自这种成像方式的放射组学特征有潜力支持生存模型的开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b97/11763491/494a18f3b582/cancers-17-00280-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验