Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany.
Eur J Nucl Med Mol Imaging. 2023 Jan;50(2):535-545. doi: 10.1007/s00259-022-05988-2. Epub 2022 Oct 13.
The aim of this study was to build and evaluate a prediction model which incorporates clinical parameters and radiomic features extracted from static as well as dynamic [F]FET PET for the survival stratification in patients with newly diagnosed IDH-wildtype glioblastoma.
A total of 141 patients with newly diagnosed IDH-wildtype glioblastoma and dynamic [F]FET PET prior to surgical intervention were included. Patients with a survival time ≤ 12 months were classified as short-term survivors. First order, shape, and texture radiomic features were extracted from pre-treatment static (tumor-to-background ratio; TBR) and dynamic (time-to-peak; TTP) images, respectively, and randomly divided into a training (n = 99) and a testing cohort (n = 42). After feature normalization, recursive feature elimination was applied for feature selection using 5-fold cross-validation on the training cohort, and a machine learning model was constructed to compare radiomic models and combined clinical-radiomic models with selected radiomic features and clinical parameters. The area under the ROC curve (AUC), accuracy, sensitivity, specificity, and positive and negative predictive values were calculated to assess the predictive performance for identifying short-term survivors in both the training and testing cohort.
A combined clinical-radiomic model comprising six clinical parameters and six selected dynamic radiomic features achieved highest predictability of short-term survival with an AUC of 0.74 (95% confidence interval, 0.60-0.88) in the independent testing cohort.
This study successfully built and evaluated prediction models using [F]FET PET-based radiomic features and clinical parameters for the individualized assessment of short-term survival in patients with a newly diagnosed IDH-wildtype glioblastoma. The combination of both clinical parameters and dynamic [F]FET PET-based radiomic features reached highest accuracy in identifying patients at risk. Although the achieved accuracy level remained moderate, our data shows that the integration of dynamic [F]FET PET radiomic data into clinical prediction models may improve patient stratification beyond established prognostic markers.
本研究旨在构建并评估一个预测模型,该模型纳入了临床参数和从静态及动态 [F]FET PET 提取的放射组学特征,用于对新诊断的 IDH 野生型胶质母细胞瘤患者进行生存分层。
共纳入 141 例新诊断的 IDH 野生型胶质母细胞瘤患者,这些患者在手术干预前均进行了动态 [F]FET PET 检查。将生存时间≤12 个月的患者归类为短期幸存者。从预处理的静态(肿瘤与背景比;TBR)和动态(达峰时间;TTP)图像中分别提取一阶、形状和纹理放射组学特征,并将其随机分为训练集(n=99)和测试集(n=42)。在特征归一化后,使用 5 折交叉验证在训练集中进行递归特征消除,以选择特征,并构建机器学习模型,比较放射组学模型和纳入选定放射组学特征及临床参数的联合临床-放射组学模型。计算曲线下面积(AUC)、准确性、敏感度、特异度、阳性和阴性预测值,以评估在训练集和测试集识别短期幸存者的预测性能。
纳入 6 项临床参数和 6 项选定的动态放射组学特征的联合临床-放射组学模型在独立测试集的短期生存预测中具有最高的预测能力,AUC 为 0.74(95%置信区间,0.60-0.88)。
本研究成功构建并评估了使用 [F]FET PET 基于放射组学特征和临床参数的预测模型,用于个体化评估新诊断的 IDH 野生型胶质母细胞瘤患者的短期生存。将临床参数与基于动态 [F]FET PET 的放射组学特征相结合,可以达到识别高危患者的最高准确性。虽然所达到的准确性水平仍然处于中等水平,但我们的数据表明,将动态 [F]FET PET 放射组学数据整合到临床预测模型中可能会提高患者分层水平,超越现有的预后标志物。