Suppr超能文献

我们能否在超声成像中使用放射组学?预处理对特征可重复性的影响。

Can we use radiomics in ultrasound imaging? Impact of preprocessing on feature repeatability.

机构信息

Department of Neuroradiology, Alphonse de Rothschild Foundation Hospital, 75019 Paris, France; Université de Paris, Faculté de Médecine, PARCC, INSERM, 75015 Paris, France.

Department of Neuroradiology, Alphonse de Rothschild Foundation Hospital, 75019 Paris, France.

出版信息

Diagn Interv Imaging. 2021 Nov;102(11):659-667. doi: 10.1016/j.diii.2021.10.004. Epub 2021 Oct 22.

Abstract

PURPOSE

The purpose of this study was to assess the inter-slice radiomic feature repeatability in ultrasound imaging and the impact of preprocessing using intensity standardization and grey-level discretization to help improve radiomics reproducibility.

MATERIALS AND METHODS

This single-center study enrolled consecutive patients with an orbital lesion who underwent ultrasound examination of the orbit from December 2015 to July 2019. Two images per lesion were randomly assigned to two subsets. Radiomic features were extracted and inter-slice repeatability was assessed using the intraclass correlation coefficient (ICC) between the subsets. The impact of preprocessing on feature repeatability was assessed using image intensity standardization with or without outliers removal on whole images, bounding boxes or regions of interest (ROI), and fixed bin size or fixed bin number grey-level discretization. Number of inter-slice repeatable features (ICC ≥0.7) between methods was compared.

RESULTS

Eighty-eight patients (37 men, 51 women) with a mean age of 51.5 ± 17 (SD) years (range: 20-88 years) were enrolled. Without preprocessing, 29/101 features (28.7%) were repeatable between slices. The greatest number of repeatable features (41/101) was obtained using intensity standardization with outliers removal on the ROI and fixed bin size discretization. Standardization performed better with outliers removal than without (P < 0.001), and on ROIs than on native images (P < 0.001). Fixed bin size discretization performed better than fixed bin number (P = 0.008).

CONCLUSION

Radiomic features extracted from ultrasound images are impacted by the slice and preprocessing. The use of intensity standardization with outliers removal applied to the ROI and a fixed bin size grey-level discretization may improve feature repeatability.

摘要

目的

本研究旨在评估超声成像中切片间放射组学特征的可重复性,以及使用强度标准化和灰度离散化进行预处理以帮助提高放射组学可重复性的影响。

材料和方法

本单中心研究纳入了 2015 年 12 月至 2019 年 7 月连续接受眼眶超声检查的眼眶病变患者。每个病变的两个图像随机分配到两个子集。提取放射组学特征,并使用子集之间的组内相关系数(ICC)评估切片间重复性。通过对整个图像、边界框或感兴趣区域(ROI)以及固定的灰度级离散化的灰度级进行强度标准化和/或异常值去除,评估预处理对特征重复性的影响。比较不同方法之间可重复切片的特征数量(ICC≥0.7)。

结果

共纳入 88 例患者(37 例男性,51 例女性),平均年龄 51.5±17(SD)岁(范围:20-88 岁)。不进行预处理,29/101 个特征(28.7%)在切片之间具有可重复性。使用 ROI 上的强度标准化和异常值去除以及固定的灰度级离散化可获得最多的可重复特征(41/101)。标准化与异常值去除比不进行异常值去除效果更好(P<0.001),在 ROI 上比在原始图像上效果更好(P<0.001)。固定的灰度级离散化比固定的灰度级数量离散化效果更好(P=0.008)。

结论

从超声图像中提取的放射组学特征受到切片和预处理的影响。使用 ROI 上的强度标准化和异常值去除以及固定的灰度级离散化可以提高特征的可重复性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验