Zhu Ximeng, Wei Yongchun, Liu Xiaogang
School of Materials and Environment, Beijing Institute of Technology, Zhuhai 519088, China.
Molecules. 2025 Jan 12;30(2):273. doi: 10.3390/molecules30020273.
This study employs quantum chemical computational methods to predict the spectroscopic properties of fluorescent probes 2,6-bis(2-benzimidazolyl)pyridine (BBP) and ()-3-(2-(1-benzo[]imidazol-2-yl)vinyl)-9-(2-(2-methoxyethoxy)ethyl)-9-carbazole (BIMC). Using time-dependent density functional theory (TDDFT), we successfully predicted the fluorescence emission wavelengths of BBP under various protonation states, achieving an average deviation of 6.0% from experimental excitation energies. Molecular dynamics simulations elucidated the microscopic mechanism underlying BBP's fluorescence quenching under acidic conditions. The spectroscopic predictions for BIMC were performed using the STEOM-DLPNO-CCSD method, yielding an average deviation of merely 0.57% from experimental values. Based on Einstein's spontaneous emission formula and empirical internal conversion rate formulas, we calculated fluorescence quantum yields for spectral intensity calibration, enabling the accurate prediction of experimental spectra. To streamline the computational workflow, we developed and open-sourced the EasySpecCalc software v0.0.1 on GitHub, aiming to facilitate the design and development of fluorescent probes.
本研究采用量子化学计算方法预测荧光探针2,6-双(2-苯并咪唑基)吡啶(BBP)和()-3-(2-(1-苯并[]咪唑-2-基)乙烯基)-9-(2-(2-甲氧基乙氧基)乙基)-9-咔唑(BIMC)的光谱性质。使用含时密度泛函理论(TDDFT),我们成功预测了BBP在各种质子化状态下的荧光发射波长,与实验激发能的平均偏差为6.0%。分子动力学模拟阐明了BBP在酸性条件下荧光猝灭的微观机制。使用STEOM-DLPNO-CCSD方法对BIMC进行光谱预测,与实验值的平均偏差仅为0.57%。基于爱因斯坦自发发射公式和经验内转换率公式,我们计算了用于光谱强度校准的荧光量子产率,从而能够准确预测实验光谱。为了简化计算工作流程,我们在GitHub上开发并开源了EasySpecCalc软件v0.0.1,旨在促进荧光探针的设计和开发。