Henkmann Jannik, Memmolo Vittorio, Moll Jochen
AG Terahertz-Photonik Physikalisches Institut, Johann Wolfgang Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany.
Department of Industrial Engineering, Universitá degli Studi di Napoli 'Federico II', Via Claudio 21, 80125 Naples, Italy.
Sensors (Basel). 2025 Jan 20;25(2):578. doi: 10.3390/s25020578.
This work leverages ultrasonic guided waves (UGWs) to detect and localize damage in structures using lightweight Artificial Intelligence (AI) models. It investigates the use of machine learning (ML) to train the effects of the damage on UGWs to the model. To reduce the number of trainable parameters, a physical signal processing approach is applied to the raw data before passing the data to the model. Starting from current state of the art in algorithms used for damage detection and localization, an AI-based technique is developed and validated on an experimental benchmark dataset before tiny ML implementation on a low-cost development board. A discussion of the need for a balance between the reduction in computational resources and increasing the precision of the models is also reported. It is shown that by extracting simple features of the signal, the models required to predict the damage locations can be significantly reduced in size while still having high accuracies of over 90%. In addition, it is possible to use these predictions to construct a fairly accurate heat map indicating the likely damage locations. Finally, a convenient edge/cloud visualization of the results can be achieved by simplifying the heat map.
这项工作利用超声波导波(UGW),通过轻量级人工智能(AI)模型来检测和定位结构中的损伤。它研究了使用机器学习(ML)将损伤对UGW的影响训练到模型中。为了减少可训练参数的数量,在将原始数据传递给模型之前,先应用一种物理信号处理方法对其进行处理。从用于损伤检测和定位的当前算法技术水平出发,开发了一种基于AI的技术,并在一个实验基准数据集上进行了验证,然后在低成本开发板上进行小型ML实现。还报告了关于在减少计算资源和提高模型精度之间取得平衡的必要性的讨论。结果表明,通过提取信号的简单特征,预测损伤位置所需的模型规模可以显著减小,同时仍具有超过90%的高精度。此外,可以利用这些预测构建一个相当准确的热图,指示可能的损伤位置。最后,通过简化热图,可以实现结果的便捷边缘/云可视化。