Ion George Nicolae Daniel, Nitulescu George Mihai, Mihai Dragos Paul
Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania.
Pharmaceuticals (Basel). 2024 Dec 25;18(1):13. doi: 10.3390/ph18010013.
Aurora kinase B (AurB) is a pivotal regulator of mitosis, making it a compelling target for cancer therapy. Despite significant advances in protein kinase inhibitor development, there are currently no AurB inhibitors readily available for therapeutic use. This study introduces a machine learning-assisted drug repurposing framework integrating quantitative structure-activity relationship (QSAR) modeling, molecular fingerprints-based classification, molecular docking, and molecular dynamics (MD) simulations. Using this pipeline, we analyzed 4680 investigational and approved drugs from DrugBank database. The machine learning models trained for drug repurposing showed satisfying performance and yielded the identification of saredutant, montelukast, and canertinib as potential AurB inhibitors. The candidates demonstrated strong binding energies, key molecular interactions with critical residues (e.g., Phe88, Glu161), and stable MD trajectories, particularly saredutant, a neurokinin-2 (NK2) antagonist. Beyond identifying potential AurB inhibitors, this study highlights an integrated methodology that can be applied to other challenging drug targets.
极光激酶B(AurB)是有丝分裂的关键调节因子,使其成为癌症治疗的一个极具吸引力的靶点。尽管蛋白激酶抑制剂的开发取得了重大进展,但目前尚无可用于治疗的AurB抑制剂。本研究引入了一个机器学习辅助的药物重新利用框架,该框架整合了定量构效关系(QSAR)建模、基于分子指纹的分类、分子对接和分子动力学(MD)模拟。使用该流程,我们分析了DrugBank数据库中的4680种研究性药物和已批准药物。为药物重新利用训练的机器学习模型表现出令人满意的性能,并确定了沙瑞度坦、孟鲁司特和卡奈替尼为潜在的AurB抑制剂。这些候选物表现出强大的结合能、与关键残基(如Phe88、Glu161)的关键分子相互作用以及稳定的MD轨迹,特别是神经激肽-2(NK2)拮抗剂沙瑞度坦。除了确定潜在的AurB抑制剂外,本研究还强调了一种可应用于其他具有挑战性的药物靶点的综合方法。