Suppr超能文献

追踪蛋白激酶靶向研究进展:将定量构效关系整合到机器学习中用于激酶靶向药物发现

Tracking protein kinase targeting advances: integrating QSAR into machine learning for kinase-targeted drug discovery.

作者信息

Shahin Rand, Jaafreh Sawsan, Azzam Yusra

机构信息

Drug Design Unit, Department of Pharmaceutical Chemistry, Hashemite University, Zarqa, Jordan.

Department of Chemistry, The Hashemite University, Zarqa, Jordan.

出版信息

Future Sci OA. 2025 Dec;11(1):2483631. doi: 10.1080/20565623.2025.2483631. Epub 2025 Apr 4.

Abstract

Protein kinases are vital drug targets, yet designing selective inhibitors is challenging, compounded by resistance and kinome complexity. This review explores Quantitative Structure-Activity Relationship (QSAR) modeling for kinase drug discovery, focusing on integrating traditional QSAR with machine learning (ML)-CNNs, RNNs-and structural data. Methods include structural databases, docking, and deep learning QSAR. Key findings show ML-integrated QSAR significantly improves selective inhibitor design for CDKs, JAKs, PIM kinases. The IDG-DREAM challenge exemplifies ML's potential for accurate kinase-inhibitor interaction prediction, outperforming traditional methods and enabling inhibitors with enhanced selectivity, efficacy, and resistance mitigation. QSAR combined with advanced computation and experimental data accelerates kinase drug discovery, offering transformative precision medicine potential. This review highlights deep learning-enhanced QSAR's novelty in automating feature extraction and capturing complex relationships, surpassing traditional QSAR, while emphasizing interpretability and experimental validation for clinical translation.

摘要

蛋白激酶是重要的药物靶点,但设计选择性抑制剂具有挑战性,耐药性和激酶组的复杂性使这一情况更加复杂。本综述探讨了用于激酶药物发现的定量构效关系(QSAR)建模,重点是将传统QSAR与机器学习(ML)——卷积神经网络(CNN)、循环神经网络(RNN)——以及结构数据相结合。方法包括结构数据库、对接和深度学习QSAR。主要研究结果表明,整合ML的QSAR显著改善了针对细胞周期蛋白依赖性激酶(CDK)、Janus激酶(JAK)、原癌基因丝氨酸/苏氨酸激酶(PIM激酶)的选择性抑制剂设计。国际数据挖掘和基因组学(IDG)——药物研发与实验医学(DREAM)挑战赛例证了ML在准确预测激酶-抑制剂相互作用方面的潜力,其性能优于传统方法,并能够开发出具有更高选择性、疗效和耐药性缓解能力的抑制剂。QSAR与先进的计算和实验数据相结合,加速了激酶药物的发现,具有实现变革性精准医学的潜力。本综述强调了深度学习增强的QSAR在自动特征提取和捕捉复杂关系方面的新颖性,超越了传统QSAR,同时强调了临床转化的可解释性和实验验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d8/11980485/f428f0a53d84/IFSO_A_2483631_F0001_C.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验