文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Uncovering the Mechanism of Action of Antiprotozoal Agents: A Survey on Photoaffinity Labeling Strategy.

作者信息

Giraudo Alessandro, Bolchi Cristiano, Pallavicini Marco, Di Santo Roberto, Costi Roberta, Saccoliti Francesco

机构信息

Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, I-20133 Milano, Italy.

Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy.

出版信息

Pharmaceuticals (Basel). 2024 Dec 28;18(1):28. doi: 10.3390/ph18010028.


DOI:10.3390/ph18010028
PMID:39861091
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11768348/
Abstract

, , and parasites are responsible for infectious diseases threatening millions of people worldwide. Despite more recent efforts devoted to the search for new antiprotozoal agents, efficacy, safety, and resistance issues still hinder the development of suited therapeutic options. The lack of robustly validated targets and the complexity of parasite's diseases have made phenotypic screening a preferential drug discovery strategy for the identification of new chemical entities. However, via this approach, no information on biological target(s) and mechanisms of action of compounds are provided. Among the target deconvolution strategies useful to fill this gap, photoaffinity labeling (PAL) has emerged as one of most suited to enable investigation in a complex cellular environment. More recently, PAL has been exploited to unravel the molecular basis of bioactive compounds' function in live parasites, allowing elucidation of the mechanism of action of both approved drugs and new chemical entities. Besides highlighting new potential drug targets, PAL can provide valuable information on efficacy and liabilities of small molecules at the molecular level, which could be exploited to greatly facilitate the rational optimization of compounds in terms of potency and safety. In this review, we will report the most recent studies that have leveraged PAL to disclose the biological targets and mechanism of action of phenotypically active compounds targeting kinetoplastid diseases (i.e., human African trypanosomiasis, leishmaniasis, and Chagas disease) and malaria. Moreover, we will comment on potential perspectives that this innovative approach can provide in aiding the discovery and development of new antiprotozoal drugs.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/5d3cf2d0473a/pharmaceuticals-18-00028-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/a87676a42d85/pharmaceuticals-18-00028-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/3c3c20a742eb/pharmaceuticals-18-00028-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/e978305a92c4/pharmaceuticals-18-00028-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/ef8a4f3a6aff/pharmaceuticals-18-00028-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/3df005178218/pharmaceuticals-18-00028-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/cbbaba0a4237/pharmaceuticals-18-00028-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/cd299fef434d/pharmaceuticals-18-00028-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/f678b2d9f12d/pharmaceuticals-18-00028-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/6afc2070dd96/pharmaceuticals-18-00028-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/d629d7eab3f0/pharmaceuticals-18-00028-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/a6ecbd24fd94/pharmaceuticals-18-00028-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/bca21fa7a70e/pharmaceuticals-18-00028-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/8f9a97383bd0/pharmaceuticals-18-00028-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/c100f1adf0de/pharmaceuticals-18-00028-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/bc2e1e5ad3b4/pharmaceuticals-18-00028-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/72c7cde2f3f1/pharmaceuticals-18-00028-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/1e5731d09aee/pharmaceuticals-18-00028-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/a583eda556d4/pharmaceuticals-18-00028-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/3bec85fb495e/pharmaceuticals-18-00028-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/3605bbdf29bc/pharmaceuticals-18-00028-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/946d41e082bf/pharmaceuticals-18-00028-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/5d3cf2d0473a/pharmaceuticals-18-00028-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/a87676a42d85/pharmaceuticals-18-00028-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/3c3c20a742eb/pharmaceuticals-18-00028-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/e978305a92c4/pharmaceuticals-18-00028-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/ef8a4f3a6aff/pharmaceuticals-18-00028-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/3df005178218/pharmaceuticals-18-00028-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/cbbaba0a4237/pharmaceuticals-18-00028-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/cd299fef434d/pharmaceuticals-18-00028-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/f678b2d9f12d/pharmaceuticals-18-00028-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/6afc2070dd96/pharmaceuticals-18-00028-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/d629d7eab3f0/pharmaceuticals-18-00028-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/a6ecbd24fd94/pharmaceuticals-18-00028-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/bca21fa7a70e/pharmaceuticals-18-00028-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/8f9a97383bd0/pharmaceuticals-18-00028-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/c100f1adf0de/pharmaceuticals-18-00028-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/bc2e1e5ad3b4/pharmaceuticals-18-00028-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/72c7cde2f3f1/pharmaceuticals-18-00028-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/1e5731d09aee/pharmaceuticals-18-00028-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/a583eda556d4/pharmaceuticals-18-00028-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/3bec85fb495e/pharmaceuticals-18-00028-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/3605bbdf29bc/pharmaceuticals-18-00028-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/946d41e082bf/pharmaceuticals-18-00028-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/11768348/5d3cf2d0473a/pharmaceuticals-18-00028-g022.jpg

相似文献

[1]
Uncovering the Mechanism of Action of Antiprotozoal Agents: A Survey on Photoaffinity Labeling Strategy.

Pharmaceuticals (Basel). 2024-12-28

[2]
Exploring microalgal and cyanobacterial metabolites with antiprotozoal activity against Leishmania and Trypanosoma parasites.

Acta Trop. 2024-3

[3]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[4]
Potentials of marine natural products against malaria, leishmaniasis, and trypanosomiasis parasites: a review of recent articles.

Infect Dis Poverty. 2021-1-22

[5]
High-throughput screening platform for natural product-based drug discovery against 3 neglected tropical diseases: human African trypanosomiasis, leishmaniasis, and Chagas disease.

J Biomol Screen. 2015-1

[6]
An Overview on Target-Based Drug Design against Kinetoplastid Protozoan Infections: Human African Trypanosomiasis, Chagas Disease and Leishmaniases.

Molecules. 2021-7-30

[7]
Screening a Natural Product-Based Library against Kinetoplastid Parasites.

Molecules. 2017-10-12

[8]
The kinetoplastid chemotherapy revisited: current drugs, recent advances and future perspectives.

Curr Med Chem. 2010

[9]
The Strong Anti-Kinetoplastid Properties of Bee Propolis: Composition and Identification of the Active Agents and Their Biochemical Targets.

Molecules. 2020-11-5

[10]
Screening Marine Natural Products for New Drug Leads against Trypanosomatids and Malaria.

Mar Drugs. 2020-3-31

本文引用的文献

[1]
New WHO guidelines for treating rhodesiense human African trypanosomiasis: expanded indications for fexinidazole and pentamidine.

Lancet Infect Dis. 2025-2

[2]
Retrospect, advances and challenges in Chagas disease diagnosis: a comprehensive review.

Lancet Reg Health Am. 2024-6-20

[3]
Photoaffinity probe-based antimalarial target identification of artemisinin in the intraerythrocytic developmental cycle of .

Imeta. 2024-2-19

[4]
Discovery of 1,3,4-Oxadiazole Derivatives as Broad-Spectrum Antiparasitic Agents.

ACS Infect Dis. 2024-6-14

[5]
Elimination of human African trypanosomiasis: The long last mile.

PLoS Negl Trop Dis. 2024-5-1

[6]
Proteomic Profiling of Antimalarial Plasmodione Using 3-Benz(o)ylmenadione Affinity-Based Probes.

Chembiochem. 2024-8-1

[7]
The elimination of human African trypanosomiasis: Monitoring progress towards the 2021-2030 WHO road map targets.

PLoS Negl Trop Dis. 2024-4

[8]
Synthesis and Photolysis Properties of a New Chloroquine Photoaffinity Probe.

Molecules. 2024-2-29

[9]
Design, Synthesis, and Evaluation of An Anti-trypanosomal [1,2,4]Triazolo[1,5-a]pyrimidine Probe for Photoaffinity Labeling Studies.

ChemMedChem. 2024-4-16

[10]
A review on potential therapeutic targets for the treatment of leishmaniasis.

Parasitol Int. 2024-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索