Suppr超能文献

生产用于血管内给药的安全可注射尺寸的疏水性微粒。

Production of Hydrophobic Microparticles at Safe-To-Inject Sizes for Intravascular Administration.

作者信息

Gomes Francisca L, Conceição Francisco, Teixeira Liliana Moreira, Leijten Jeroen, Jonkheijm Pascal

机构信息

Laboratory of Biointerface Chemistry, Department of Molecules and Materials, Faculty of Science and Technology, Technical Medical Centre and MESA+ Institute, University of Twente, 7522NB Enschede, The Netherlands.

Leijten Laboratory, Department of BioEngineering Technologies, Faculty of Science and Technology, Technical Medical Centre, University of Twente, 7522NB Enschede, The Netherlands.

出版信息

Pharmaceutics. 2025 Jan 6;17(1):64. doi: 10.3390/pharmaceutics17010064.

Abstract

Hydrophobic microparticles are one of the most versatile structures in drug delivery and tissue engineering. These constructs offer a protective environment for hydrophobic or water-sensitive compounds (e.g., drugs, peroxides), providing an optimal solution for numerous biomedical purposes, such as drug delivery or oxygen therapeutics. The intravascular administration of hydrophobic microparticles requires a safe-to-flow particle profile, which typically corresponds to a maximum size of 5 µm-the generally accepted diameter for the thinnest blood vessels in humans. However, the production of hydrophobic microparticles below this size range remains largely unexplored. In this work, we investigate the fabrication of hydrophobic microparticles at safe-to-inject and safe-to-flow sizes (<5 µm) for intravascular administration. Polycaprolactone microparticles (PCL MPs) are produced using a double-emulsification method with tip ultrasonication, for which various production parameters (PCL molecular weight, PCL concentration, type of stabilizer, and filtration) are optimized to obtain particles at sizes below 5 µm. We achieve a PCL MP size distribution of 99.8% below this size limit, and prove that these particles can flow without obstruction through a microfluidic model emulating a thin human blood capillary (4.1 µm × 3.0 µm width × heigh). Overall, we demonstrate that hydrophobic microparticles can be fabricated at safe-to-flow sizes using a simple and scalable setup, paving the way towards their applicability as new intravascular injectables.

摘要

疏水微粒是药物递送和组织工程中用途最为广泛的结构之一。这些构建体为疏水性或水敏性化合物(如药物、过氧化物)提供了一个保护环境,为众多生物医学目的(如药物递送或氧疗)提供了最佳解决方案。疏水微粒的血管内给药需要安全流动的颗粒外形,这通常对应于最大尺寸为5 µm——这是人类最细血管普遍接受的直径。然而,尺寸低于此范围的疏水微粒的生产在很大程度上仍未得到探索。在这项工作中,我们研究了用于血管内给药的安全注射和安全流动尺寸(<5 µm)的疏水微粒的制备。聚己内酯微粒(PCL MPs)采用带有尖端超声处理的双乳化法制备,对各种生产参数(PCL分子量、PCL浓度、稳定剂类型和过滤)进行了优化,以获得尺寸低于5 µm的微粒。我们实现了99.8%的PCL MPs尺寸分布低于此尺寸限制,并证明这些微粒可以在模拟人类细毛细血管(宽4.1 µm×高3.0 µm)的微流体模型中无阻流动。总体而言,我们证明了使用简单且可扩展的装置可以制备出安全流动尺寸的疏水微粒,为其作为新型血管内注射剂的应用铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c45/11768317/4084a1a18a6e/pharmaceutics-17-00064-g001.jpg

相似文献

1
Production of Hydrophobic Microparticles at Safe-To-Inject Sizes for Intravascular Administration.
Pharmaceutics. 2025 Jan 6;17(1):64. doi: 10.3390/pharmaceutics17010064.
2
Fabrication of PEG-PLGA Microparticles with Tunable Sizes for Controlled Drug Release Application.
Molecules. 2023 Sep 18;28(18):6679. doi: 10.3390/molecules28186679.
4
Functional polymeric microparticles engineered from controllable microfluidic emulsions.
Acc Chem Res. 2014 Feb 18;47(2):373-84. doi: 10.1021/ar4001263. Epub 2013 Nov 7.
5
Structured Biodegradable Polymeric Microparticles for Drug Delivery Produced Using Flow Focusing Glass Microfluidic Devices.
ACS Appl Mater Interfaces. 2015 Oct 21;7(41):23132-43. doi: 10.1021/acsami.5b06943. Epub 2015 Oct 12.
7
A novel bio-safe phase separation process for preparing open-pore biodegradable polycaprolactone microparticles.
Mater Sci Eng C Mater Biol Appl. 2014 Sep;42:102-10. doi: 10.1016/j.msec.2014.05.037. Epub 2014 May 22.
8
9
Silicon microfluidic flow focusing devices for the production of size-controlled PLGA based drug loaded microparticles.
Int J Pharm. 2014 Jun 5;467(1-2):60-9. doi: 10.1016/j.ijpharm.2014.03.051. Epub 2014 Mar 28.
10
Collagen-coated polycaprolactone microparticles as a controlled drug delivery system.
J Microencapsul. 2008 Aug;25(5):298-306. doi: 10.1080/02652040801972004.

本文引用的文献

1
Recent Applications of PLGA in Drug Delivery Systems.
Polymers (Basel). 2024 Sep 14;16(18):2606. doi: 10.3390/polym16182606.
2
Visible particles in parenteral drug products: A review of current safety assessment practice.
Curr Res Toxicol. 2024 Jun 9;7:100175. doi: 10.1016/j.crtox.2024.100175. eCollection 2024.
3
Multi-stimuli responsive Cu-MOFs@Keratin drug delivery system for chemodynamic therapy.
Front Bioeng Biotechnol. 2023 Feb 2;11:1125348. doi: 10.3389/fbioe.2023.1125348. eCollection 2023.
5
Zein Microparticles and Nanoparticles as Drug Delivery Systems.
Polymers (Basel). 2022 May 27;14(11):2172. doi: 10.3390/polym14112172.
6
Microcarriers in application for cartilage tissue engineering: Recent progress and challenges.
Bioact Mater. 2022 Jan 25;17:81-108. doi: 10.1016/j.bioactmat.2022.01.033. eCollection 2022 Nov.
7
Enzyme-Mediated Alleviation of Peroxide Toxicity in Self-Oxygenating Biomaterials.
Adv Healthc Mater. 2022 Jul;11(13):e2102697. doi: 10.1002/adhm.202102697. Epub 2022 Apr 15.
9
Self-Oxygenation of Tissues Orchestrates Full-Thickness Vascularization of Living Implants.
Adv Funct Mater. 2021 Oct 14;31(42). doi: 10.1002/adfm.202100850. Epub 2021 Jul 6.
10
Micro and nanoscale technologies in oral drug delivery.
Adv Drug Deliv Rev. 2020;157:37-62. doi: 10.1016/j.addr.2020.07.012. Epub 2020 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验