Yeagle P L
Biochim Biophys Acta. 1985 Apr 26;815(1):33-6. doi: 10.1016/0005-2736(85)90470-5.
2H nuclear magnetic resonance (2H-NMR) spectra of dioleoylphosphatidylcholine labelled at positions 9 and 10 in the acyl chains of the phospholipid were obtained in the presence of cholesterol and lanosterol. The spectra show in all cases three quadrupole splittings. One is due to the deuterium on position 10 of the sn-1 chain and another to the deuterium on position 10 of the sn-2 chain. The third deuterium quadrupole splitting arises from the deuterium at position 9 of both chains. Cholesterol, at increasing concentration, produces an increase in the quadrupole splitting from position 9, corresponding to an increase in order of that C-D bond segment arising from the inclusion of cholesterol in the membrane. Little effect is noted on the quadrupole splittings arising from position 10 of either chain. Lanosterol appears to have no effect on the quadrupole splittings from position 9. Lanosterol, likewise, has no effects on the quadrupole splittings from position 10 of both chains. These data therefore suggest little disorganization of the membrane structure due to the 14-methyl group. However, the 14-methyl group prevents lanosterol from causing the increase in motional order of the phospholipid hydrocarbon chains characteristic of cholesterol.