Suppr超能文献

Alcohol effects on rapid kinetics of water transport through lipid membranes and location of the main barrier.

作者信息

Inoue T, Kamaya H, Ueda I

出版信息

Biochim Biophys Acta. 1985 Apr 26;815(1):68-74. doi: 10.1016/0005-2736(85)90475-4.

Abstract

The effect of 1-alkanols (from 1-butanol up to 1-dodecanol) on the water permeability of dimyristoylphosphatidylcholine vesicle membranes was studied by measuring the osmotic swelling rate as functions of 1-alkanol concentrations and temperatures above the gel-to-liquid-crystalline phase transition. For 1-butanol and 1-hexanol, the activation energy for water permeation was invariant with the addition of alkanols, whereas for 1-octanol, 1-decanol and 1-dodecanol, the activation energy decreased depending on the alkanol concentration, and the extent of the decrease was larger for alkanol with a longer hydrocarbon chain. These results suggests that hydrocarbon moiety beyond seven or eight carbon atoms from the head group in phospholipid molecules constitutes the main barrier for water permeation through the dimyristoylphosphatidylcholine vesicle membrane. The relative volume change of the vesicle due to osmotic swelling increased with the addition of 1-alkanols. Presumably, the membrane structural strength is weakened by the presence of 1-alkanols in the membrane. Contrary to the dependence of the swelling rate upon the alkanol carbon-chain length, no significant difference in the effect on the relative volume changes was seen among the 1-alkanols. This result suggests that weakening of the membrane structure is caused by perturbation of the membrane/water interface induced by incorporation of 1-alkanols into the membrane.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验