Esser Anna J, Sastre Santiago, Dinh Thien-Ly Julia, Tanner Viola, Wingert Victoria, Klotz Katharina, Jacobsen Donald W, Spiekerkoetter Ute, Schilling Oliver, Zeida Ari, Radi Rafael, Hannibal Luciana
Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg im Breisgau 79106, Germany.
Departamento de Biofísica, Facultad de Medicina, and Programa de Doctorado en Química, Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay.
Biochemistry. 2025 Feb 4;64(3):692-709. doi: 10.1021/acs.biochem.4c00613. Epub 2025 Jan 25.
Human CblC catalyzes the indispensable processing of dietary vitamin B by the removal of its β-axial ligand and an either one- or two-electron reduction of its cobalt center to yield cob(II)alamin and cob(I)alamin, respectively. Human CblC possesses five cysteine residues of an unknown function. We hypothesized that Cys149, conserved in mammals, tunes the CblC reactivity. To test this, we recreated an evolutionary early variant of CblC, namely, Cys149Ser, as well as Cys149Ala. Surprisingly, substitution of Cys149 for serine or alanine led to faster observed rates of glutathione-driven dealkylation of MeCbl compared to wild-type CblC. The reaction yielded aquacobalamin and stoichiometric formation of -methylglutathione as the demethylation products. Determination of end-point oxidized glutathione revealed significantly uncoupled electron transfer in both mutants compared with the wild type. Long incubation times revealed the conversion of aquacobalamin to cob(II)alamin in the presence of oxygen in mutants Cys149Ser and Cys149Ala but not in wild-type CblC, all without an effect on dealkylation rates. This finding is reminiscent of the catalytic behavior of CblC from , wherein Cys149 is naturally substituted by Ser, and the reaction mechanism differs from that of human CblC precisely by the unusual stabilization of cob(II)alamin in the presence of oxygen. Thus, Cys149 tunes the catalytic activity of human CblC by minimizing uncoupled electron transfer that forms GSSG. This occurs at the expense of a slower observed rate constant for the demethylation of MeCbl. This adjustment is compatible with diminished needs for intracellular turnover of cobalamins and with life under increased oxygen concentration.
人源CblC通过去除膳食维生素B的β-轴向配体并将其钴中心进行单电子或双电子还原,分别生成钴胺素(cob(II)alamin)和甲钴胺素(cob(I)alamin),从而催化膳食维生素B不可或缺的加工过程。人源CblC含有五个功能未知的半胱氨酸残基。我们推测,在哺乳动物中保守的半胱氨酸149(Cys149)调节着CblC的反应活性。为了验证这一点,我们重建了CblC的一个进化早期变体,即Cys149Ser,以及Cys149Ala。令人惊讶的是,与野生型CblC相比,用丝氨酸或丙氨酸取代Cys149导致观察到的谷胱甘肽驱动的甲基钴胺素(MeCbl)脱烷基化速率更快。该反应生成了水钴胺素,并化学计量地形成了作为去甲基化产物的γ-甲基谷胱甘肽。终点氧化型谷胱甘肽的测定表明,与野生型相比,两个突变体中的电子转移明显解偶联。长时间孵育显示,在Cys149Ser和Cys149Ala突变体中,在有氧存在的情况下水钴胺素会转化为钴胺素(cob(II)alamin),而野生型CblC则不会,所有这些对脱烷基化速率均无影响。这一发现让人联想到来自[具体物种]的CblC的催化行为,其中Cys149天然被丝氨酸取代,并且反应机制与人类CblC的反应机制的不同之处恰恰在于在有氧存在的情况下钴胺素(cob(II)alamin)的异常稳定。因此,Cys149通过最小化形成氧化型谷胱甘肽(GSSG)的解偶联电子转移来调节人源CblC的催化活性。这是以观察到的MeCbl去甲基化速率常数较慢为代价的。这种调节与细胞内钴胺素周转需求的减少以及在氧气浓度增加的环境下的生存相适应。