Jinnouchi Ryosuke, Lahnsteiner Jonathan, Karsai Ferenc, Kresse Georg, Bokdam Menno
University of Vienna, Faculty of Physics and Center for Computational Materials Sciences, Sensengasse 8/12, 1090 Vienna, Austria.
Toyota Central R&D Labs, Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192, Japan.
Phys Rev Lett. 2019 Jun 7;122(22):225701. doi: 10.1103/PhysRevLett.122.225701.
Realistic finite temperature simulations of matter are a formidable challenge for first principles methods. Long simulation times and large length scales are required, demanding years of computing time. Here we present an on-the-fly machine learning scheme that generates force fields automatically during molecular dynamics simulations. This opens up the required time and length scales, while retaining the distinctive chemical precision of first principles methods and minimizing the need for human intervention. The method is widely applicable to multielement complex systems. We demonstrate its predictive power on the entropy driven phase transitions of hybrid perovskites, which have never been accurately described in simulations. Using machine learned potentials, isothermal-isobaric simulations give direct insight into the underlying microscopic mechanisms. Finally, we relate the phase transition temperatures of different perovskites to the radii of the involved species, and we determine the order of the transitions in Landau theory.
对物质进行现实的有限温度模拟,对于第一性原理方法来说是一项艰巨的挑战。需要很长的模拟时间和很大的长度尺度,这需要数年的计算时间。在此,我们提出一种实时机器学习方案,该方案在分子动力学模拟过程中自动生成力场。这开辟了所需的时间和长度尺度,同时保留了第一性原理方法独特的化学精度,并将人工干预需求降至最低。该方法广泛适用于多元素复杂系统。我们展示了其对混合钙钛矿熵驱动相变的预测能力,此前在模拟中从未对其进行过准确描述。使用机器学习势进行等压等温模拟,能直接洞察潜在的微观机制。最后,我们将不同钙钛矿的相变温度与所涉及物种的半径联系起来,并在朗道理论中确定相变的顺序。