Carrasco-Ribelles Lucía A, Cabrera-Bean Margarita, Khalid Sara, Roso-Llorach Albert, Violán Concepción
Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Barcelona, Spain.
Department of Signal Theory and Communications, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.
J Med Syst. 2025 Jan 25;49(1):17. doi: 10.1007/s10916-024-02138-z.
Predicting health-related outcomes can help with proactive healthcare planning and resource management. This is especially important on the older population, an age group growing in the coming decades. Considering longitudinal rather than cross-sectional information from primary care electronic health records (EHRs) can contribute to more informed predictions. In this work, we developed prediction models using longitudinal EHRs to inform resource allocation. In this study, we developed deep-learning-based prognostic models to predict 1-year and 5-year all-cause mortality, nursing home admission, and home care need in people over 65 years old using all the longitudinal information from EHRs. The models included attention mechanisms to increase their transparency. EHRs were drawn from SIDIAP (primary care, Catalonia (Spain)) from 2010-2019. Performance on the test set was compared to that from baseline models using cross-sectional one-year history only. Data from 1,456,052 individuals over 65 years old were considered. Cohen's kappa obtained using longitudinal data was 3.4-fold (1-year all-cause mortality), 10.3-fold (5-year all-cause mortality), 1.1-fold (5-year nursing home admission), and 1.2-fold (5-year home care need) higher than that obtained by the one-year history baseline models. Our models performed better than those not considering longitudinal data, especially when predicting further into the future. However, nursing home admission and home care need in the long term were harder to predict, suggesting their dependence on more abrupt changes. The attention maps helped to understand the predictions, enhancing model transparency. These prediction models can contribute to improve resource allocation in the general population of aging adults.
预测与健康相关的结果有助于进行积极的医疗保健规划和资源管理。这对于老年人群体尤为重要,因为在未来几十年中这一年龄组的人数将会增加。考虑来自基层医疗电子健康记录(EHR)的纵向信息而非横断面信息有助于做出更明智的预测。在这项工作中,我们利用纵向EHR开发了预测模型,为资源分配提供参考。在本研究中,我们开发了基于深度学习的预后模型,利用EHR中的所有纵向信息预测65岁以上人群的1年和5年全因死亡率、养老院入住率和家庭护理需求。这些模型包括注意力机制以提高其透明度。EHR数据来自2010 - 2019年西班牙加泰罗尼亚地区的SIDIAP(基层医疗)。将测试集上的性能与仅使用横断面一年病史的基线模型进行比较。考虑了1456052名65岁以上个体的数据。使用纵向数据获得的科恩kappa系数比一年病史基线模型获得的系数高3.4倍(1年全因死亡率)、10.3倍(5年全因死亡率)、1.1倍(5年养老院入住率)和1.2倍(5年家庭护理需求)。我们的模型比不考虑纵向数据的模型表现更好,尤其是在预测更长远的未来时。然而,长期的养老院入住率和家庭护理需求更难预测,这表明它们依赖于更突然的变化。注意力图有助于理解预测结果,提高了模型的透明度。这些预测模型有助于改善老年人群体的资源分配。