Li Mengying, Fang Yin, Shao Jiong, Jiang Yan, Xu Guoping, Cui Xin-Wu, Wu Xinglong
School of Computer Science and Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, PR China.
Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, PR China.
Int J Med Inform. 2025 Apr;196:105793. doi: 10.1016/j.ijmedinf.2025.105793. Epub 2025 Jan 21.
In the context of routine breast cancer diagnosis, the precise discrimination between benign and malignant breast masses holds utmost significance. Notably, few prior investigations have concurrently explored the integration of imaging histology features, deep learning characteristics, and clinical parameters. The primary objective of this retrospective study was to pioneer a multimodal feature fusion model tailored for the prediction of breast tumor malignancy, harnessing the potential of ultrasound images.
We compiled a dataset that included clinical features from 1065 patients and 3315 image datasets. Specifically, we selected data from 603 patients for training our multimodal model. The comprehensive experimental workflow involves identifying the optimal unimodal model, extracting unimodal features, fusing multimodal features, gaining insights from these fused features, and ultimately generating prediction results using a classifier.
Our multimodal feature fusion model demonstrates outstanding performance, achieving an AUC of 0.994 (95 % CI: 0.988-0.999) and an F1 score of 0.971 on the primary multicenter dataset. In the evaluation on two independent testing cohorts (TCs), it maintains strong performance, with AUCs of 0.942 (95 % CI: 0.854-0.994) for TC1 and 0.945 (95 % CI: 0.857-1.000) for TC2, accompanied by corresponding F1 scores of 0.872 and 0.857, respectively. Notably, the decision curve analysis reveals that our model achieves higher accuracy within the threshold probability range of approximately [0.210, 0.890] (TC1) and [0.000, 0.850] (TC2) compared to alternative methods. This capability enhances its utility in clinical decision-making, providing substantial benefits.
The multimodal model proposed in this paper can comprehensively evaluate patients' multifaceted clinical information, achieve the prediction of benign and malignant breast ultrasound tumors, and obtain high performance indexes.
在常规乳腺癌诊断的背景下,准确区分乳腺良性和恶性肿块至关重要。值得注意的是,以往很少有研究同时探讨影像组织学特征、深度学习特征和临床参数的整合。这项回顾性研究的主要目的是开创一种多模态特征融合模型,利用超声图像的潜力来预测乳腺肿瘤的恶性程度。
我们编制了一个数据集,其中包括1065例患者的临床特征和3315个图像数据集。具体而言,我们从603例患者中选取数据来训练我们的多模态模型。全面的实验工作流程包括确定最佳单模态模型、提取单模态特征、融合多模态特征、从这些融合特征中获取见解,并最终使用分类器生成预测结果。
我们的多模态特征融合模型表现出色,在主要的多中心数据集中,AUC为0.994(95%CI:0.988 - 0.999),F1分数为0.971。在对两个独立测试队列(TC)的评估中,它保持了较强的性能,TC1的AUC为0.942(95%CI:0.854 - 0.994),TC2的AUC为0.945(95%CI:0.857 - 1.000),相应的F1分数分别为0.872和0.857。值得注意的是,决策曲线分析表明,与其他方法相比,我们的模型在大约[0.210, 0.890](TC1)和[0.000, 0.850](TC2)的阈值概率范围内实现了更高的准确性。这种能力增强了其在临床决策中的实用性,带来了显著益处。
本文提出的多模态模型能够全面评估患者多方面的临床信息,实现乳腺超声肿瘤良恶性的预测,并获得高性能指标。