Suppr超能文献

一种基于联合三平面物理约束深度学习的多项式拟合方法用于磁共振电特性断层成像。

A joint three-plane physics-constrained deep learning based polynomial fitting approach for MR electrical properties tomography.

作者信息

Jung Kyu-Jin, Meerbothe Thierry G, Cui Chuanjiang, Park Mina, van den Berg Cornelis A T, Mandija Stefano, Kim Dong-Hyun

机构信息

Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea.

Computational Imaging Group for MR Therapy and Diagnostics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands.

出版信息

Neuroimage. 2025 Feb 15;307:121054. doi: 10.1016/j.neuroimage.2025.121054. Epub 2025 Jan 23.

Abstract

Magnetic resonance electrical properties tomography can extract the electrical properties of in-vivo tissue. To estimate tissue electrical properties, various reconstruction algorithms have been proposed. However, physics-based reconstructions are prone to various artifacts such as noise amplification and boundary artifact. Deep learning-based approaches are robust to these artifacts but need extensive training datasets and suffer from generalization to unseen data. To address these issues, we introduce a joint three-plane physics-constrained deep learning framework for polynomial fitting MR-EPT by merging physics-based weighted polynomial fitting with deep learning. Within this framework, deep learning is used to discern the optimal polynomial fitting weights for a physics based polynomial fitting reconstruction on the complex B data. For the prediction of optimal fitting coefficients, three neural networks were separately trained on simulated heterogeneous brain models to predict optimal polynomial weighting parameters in three orthogonal planes. Then, the network weights were jointly optimized to estimate the polynomial weights in each plane for a combined conductivity reconstruction. Based on this physics-constrained deep learning approach, we achieved an improvement of conductivity estimation accuracy in comparison to a single plane estimation and a reduction of computational load. The results demonstrate that the proposed method based on 3D data exhibits superior performance in comparison to conventional polynomial fitting methods in terms of capturing anatomical detail and homogeneity. Crucially, in-vivo application of the proposed method showed that the method generalizes well to in-vivo data, without introducing significant errors or artifacts. This generalization makes the presented method a promising candidate for use in clinical applications.

摘要

磁共振电阻抗断层成像能够提取体内组织的电阻抗特性。为了估计组织的电阻抗特性,人们提出了各种重建算法。然而,基于物理的重建容易出现各种伪影,如噪声放大和边界伪影。基于深度学习的方法对这些伪影具有鲁棒性,但需要大量的训练数据集,并且难以泛化到未见过的数据。为了解决这些问题,我们通过将基于物理的加权多项式拟合与深度学习相结合,引入了一种用于多项式拟合磁共振电阻抗断层成像的联合三平面物理约束深度学习框架。在此框架内,深度学习用于在复数B数据上为基于物理的多项式拟合重建辨别最优多项式拟合权重。为了预测最优拟合系数,分别在模拟的异质脑模型上训练了三个神经网络,以预测三个正交平面中的最优多项式加权参数。然后,联合优化网络权重,以估计每个平面中的多项式权重,用于联合电导率重建。基于这种物理约束深度学习方法,与单平面估计相比,我们提高了电导率估计精度,并降低了计算负荷。结果表明,所提出的基于三维数据的方法在捕获解剖细节和均匀性方面比传统多项式拟合方法具有更好的性能。至关重要的是,该方法在体内的应用表明,该方法能够很好地泛化到体内数据,而不会引入显著的误差或伪影。这种泛化使得所提出的方法成为临床应用中有前景的候选方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验