Suppr超能文献

将基于物理的模型与深度学习图像合成相结合,以及术中大脑锥形束 CT 的不确定性。

Combining physics-based models with deep learning image synthesis and uncertainty in intraoperative cone-beam CT of the brain.

机构信息

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA.

Department of Radiation Oncology, Johns Hopkins University, Baltimore, Maryland, USA.

出版信息

Med Phys. 2023 May;50(5):2607-2624. doi: 10.1002/mp.16351. Epub 2023 Mar 21.

Abstract

BACKGROUND

Image-guided neurosurgery requires high localization and registration accuracy to enable effective treatment and avoid complications. However, accurate neuronavigation based on preoperative magnetic resonance (MR) or computed tomography (CT) images is challenged by brain deformation occurring during the surgical intervention.

PURPOSE

To facilitate intraoperative visualization of brain tissues and deformable registration with preoperative images, a 3D deep learning (DL) reconstruction framework (termed DL-Recon) was proposed for improved intraoperative cone-beam CT (CBCT) image quality.

METHODS

The DL-Recon framework combines physics-based models with deep learning CT synthesis and leverages uncertainty information to promote robustness to unseen features. A 3D generative adversarial network (GAN) with a conditional loss function modulated by aleatoric uncertainty was developed for CBCT-to-CT synthesis. Epistemic uncertainty of the synthesis model was estimated via Monte Carlo (MC) dropout. Using spatially varying weights derived from epistemic uncertainty, the DL-Recon image combines the synthetic CT with an artifact-corrected filtered back-projection (FBP) reconstruction. In regions of high epistemic uncertainty, DL-Recon includes greater contribution from the FBP image. Twenty paired real CT and simulated CBCT images of the head were used for network training and validation, and experiments evaluated the performance of DL-Recon on CBCT images containing simulated and real brain lesions not present in the training data. Performance among learning- and physics-based methods was quantified in terms of structural similarity (SSIM) of the resulting image to diagnostic CT and Dice similarity metric (DSC) in lesion segmentation compared to ground truth. A pilot study was conducted involving seven subjects with CBCT images acquired during neurosurgery to assess the feasibility of DL-Recon in clinical data.

RESULTS

CBCT images reconstructed via FBP with physics-based corrections exhibited the usual challenges to soft-tissue contrast resolution due to image non-uniformity, noise, and residual artifacts. GAN synthesis improved image uniformity and soft-tissue visibility but was subject to error in the shape and contrast of simulated lesions that were unseen in training. Incorporation of aleatoric uncertainty in synthesis loss improved estimation of epistemic uncertainty, with variable brain structures and unseen lesions exhibiting higher epistemic uncertainty. The DL-Recon approach mitigated synthesis errors while maintaining improvement in image quality, yielding 15%-22% increase in SSIM (image appearance compared to diagnostic CT) and up to 25% increase in DSC in lesion segmentation compared to FBP. Clear gains in visual image quality were also observed in real brain lesions and in clinical CBCT images.

CONCLUSIONS

DL-Recon leveraged uncertainty estimation to combine the strengths of DL and physics-based reconstruction and demonstrated substantial improvements in the accuracy and quality of intraoperative CBCT. The improved soft-tissue contrast resolution could facilitate visualization of brain structures and support deformable registration with preoperative images, further extending the utility of intraoperative CBCT in image-guided neurosurgery.

摘要

背景

影像引导神经外科需要高精度的定位和配准,以实现有效的治疗并避免并发症。然而,基于术前磁共振(MR)或计算机断层扫描(CT)图像的精确神经导航受到术中发生的脑变形的挑战。

目的

为了便于术中可视化脑组织并与术前图像进行可变形配准,提出了一种 3D 深度学习(DL)重建框架(称为 DL-Recon),以提高术中锥形束 CT(CBCT)图像的质量。

方法

DL-Recon 框架结合了基于物理的模型和深度学习 CT 合成,并利用不确定性信息提高对未见特征的鲁棒性。开发了一种具有条件损失函数的 3D 生成对抗网络(GAN),该函数由由随机不确定性调制。通过蒙特卡罗(MC)dropout 来估计合成模型的认知不确定性。使用从认知不确定性得出的空间变化权重,DL-Recon 将合成 CT 与经过伪影校正的滤波反投影(FBP)重建相结合。在认知不确定性较高的区域,DL-Recon 包含更多来自 FBP 图像的贡献。使用头部的 20 对真实 CT 和模拟 CBCT 图像进行网络训练和验证,并进行实验评估 DL-Recon 在包含训练数据中未出现的模拟和真实脑损伤的 CBCT 图像上的性能。从结构相似性(SSIM)和与地面真实值相比的病变分割的骰子相似性度量(DSC)方面,对学习和基于物理的方法的性能进行了量化。进行了一项涉及 7 名接受神经外科手术的患者的 CBCT 图像的试点研究,以评估 DL-Recon 在临床数据中的可行性。

结果

使用基于物理的校正的 FBP 重建的 CBCT 图像由于图像不均匀性、噪声和残留伪影而显示出软组织对比度分辨率的常见挑战。GAN 合成提高了图像的均匀性和软组织的可见性,但由于在训练中未见过的模拟病变的形状和对比度而存在误差。在合成损失中加入随机不确定性可提高对认知不确定性的估计,具有可变的脑结构和未见过的病变的不确定性更高。DL-Recon 方法减轻了合成误差,同时保持了图像质量的提高,与 FBP 相比,SSIM 提高了 15%-22%(与诊断 CT 相比的图像外观),病变分割的 DSC 提高了 25%。在真实的脑损伤和临床 CBCT 图像中也观察到了明显的视觉图像质量改善。

结论

DL-Recon 利用不确定性估计来结合深度学习和基于物理的重建的优势,在术中 CBCT 的准确性和质量方面都有了显著提高。改进的软组织对比度分辨率可以促进脑组织的可视化,并支持与术前图像的可变形配准,从而进一步扩展术中 CBCT 在影像引导神经外科中的应用。

相似文献

2
Deformable motion compensation in interventional cone-beam CT with a context-aware learned autofocus metric.
Med Phys. 2024 Jun;51(6):4158-4180. doi: 10.1002/mp.17125. Epub 2024 May 11.
4
Reference-free learning-based similarity metric for motion compensation in cone-beam CT.
Phys Med Biol. 2022 Jun 16;67(12). doi: 10.1088/1361-6560/ac749a.
6
Cone-beam CT-derived relative stopping power map generation via deep learning for proton radiotherapy.
Med Phys. 2020 Sep;47(9):4416-4427. doi: 10.1002/mp.14347. Epub 2020 Jul 27.
7
Mitigation of motion-induced artifacts in cone beam computed tomography using deep convolutional neural networks.
Med Phys. 2023 Oct;50(10):6228-6242. doi: 10.1002/mp.16405. Epub 2023 Apr 11.
8
Paired cycle-GAN-based image correction for quantitative cone-beam computed tomography.
Med Phys. 2019 Sep;46(9):3998-4009. doi: 10.1002/mp.13656. Epub 2019 Jul 17.
9
Registration-guided deep learning image segmentation for cone beam CT-based online adaptive radiotherapy.
Med Phys. 2022 Aug;49(8):5304-5316. doi: 10.1002/mp.15677. Epub 2022 May 4.
10
Improving CBCT quality to CT level using deep learning with generative adversarial network.
Med Phys. 2021 Jun;48(6):2816-2826. doi: 10.1002/mp.14624. Epub 2021 May 14.

引用本文的文献

1
Digital twins and Big AI: the future of truly individualised healthcare.
NPJ Digit Med. 2025 Aug 1;8(1):494. doi: 10.1038/s41746-025-01874-x.
2
Real-time volumetric CBCT reconstruction using surface and X-ray imaging for image-guided radiotherapy.
Med Image Anal. 2025 Jun 20;105:103694. doi: 10.1016/j.media.2025.103694.
3
Deep learning in neurosurgery: a systematic literature review with a structured analysis of applications across subspecialties.
Front Neurol. 2025 Apr 16;16:1532398. doi: 10.3389/fneur.2025.1532398. eCollection 2025.
5
Uncertainty estimation in female pelvic synthetic computed tomography generated from iterative reconstructed cone-beam computed tomography.
Phys Imaging Radiat Oncol. 2025 Mar 5;33:100743. doi: 10.1016/j.phro.2025.100743. eCollection 2025 Jan.
6
Clinical Super-Resolution Computed Tomography of Bone Microstructure: Application in Musculoskeletal and Dental Imaging.
Ann Biomed Eng. 2024 May;52(5):1255-1269. doi: 10.1007/s10439-024-03450-y. Epub 2024 Feb 15.
7

本文引用的文献

3
Deep learning based synthetic-CT generation in radiotherapy and PET: A review.
Med Phys. 2021 Nov;48(11):6537-6566. doi: 10.1002/mp.15150. Epub 2021 Sep 15.
4
Dilated densely connected U-Net with uncertainty focus loss for 3D ABUS mass segmentation.
Comput Methods Programs Biomed. 2021 Sep;209:106313. doi: 10.1016/j.cmpb.2021.106313. Epub 2021 Jul 31.
5
TorchIO: A Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning.
Comput Methods Programs Biomed. 2021 Sep;208:106236. doi: 10.1016/j.cmpb.2021.106236. Epub 2021 Jun 17.
6
Multitask 3D CBCT-to-CT translation and organs-at-risk segmentation using physics-based data augmentation.
Med Phys. 2021 Sep;48(9):5130-5141. doi: 10.1002/mp.15083. Epub 2021 Aug 9.
7
Improving CBCT quality to CT level using deep learning with generative adversarial network.
Med Phys. 2021 Jun;48(6):2816-2826. doi: 10.1002/mp.14624. Epub 2021 May 14.
8
Role of intraoperative computed tomography scanner in modern neurosurgery - An early experience.
Surg Neurol Int. 2020 Aug 15;11:247. doi: 10.25259/SNI_303_2020. eCollection 2020.
10
Intraoperative CT and cone-beam CT imaging for minimally invasive evacuation of spontaneous intracerebral hemorrhage.
Acta Neurochir (Wien). 2020 Dec;162(12):3167-3177. doi: 10.1007/s00701-020-04284-y. Epub 2020 Mar 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验