Suppr超能文献

MPEMDA:一种用于预测微生物-药物关联的具有预完成和纠错功能的多相似性整合方法。

MPEMDA: A multi-similarity integration approach with pre-completion and error correction for predicting microbe-drug associations.

作者信息

Li Yuxiang, Zhao Haochen, Wang Jianxin

机构信息

School of Computer Science and Engineering, Central South University, Changsha 410083, China; Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha 410083, China.

School of Computer Science and Engineering, Central South University, Changsha 410083, China; Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha 410083, China.

出版信息

Methods. 2025 Mar;235:1-9. doi: 10.1016/j.ymeth.2024.12.013. Epub 2025 Jan 23.

Abstract

Exploring the associations between microbes and drugs offers valuable insights into their underlying mechanisms. Traditional wet lab experiments, while reliable, are often time-consuming and labor-intensive, making computational approaches an attractive alternative. Existing similarity-based machine learning models for predicting microbe-drug associations typically rely on integrated similarities as input, neglecting the unique contributions of individual similarities, which can compromise predictive accuracy. To overcome these limitations, we develop MPEMDA, a novel method that pre-completes the microbe-drug association matrix using various similarity combinations and employs a label propagation algorithm with error correction to predict microbe-drug associations. Compared with existing methods, MPEMDA simultaneously utilizes the integrated and individual similarities obtained through the Similarity Network Fusion (SNF) method to pre-complete the known drug-microbe association matrix, followed by error correction to optimize the predictive scores generated by the label propagation algorithm. Experimental results on three benchmark datasets show that MPEMDA outperforms state-of-the-art methods in both the 5-fold cross-validation and de novo test. Additionally, case studies on drugs and microbes highlight the method's strong potential to identify novel microbe-drug associations. The MPEMDA code is available at https://github.com/lyx8527/MPEMDA.

摘要

探索微生物与药物之间的关联为深入了解其潜在机制提供了宝贵的见解。传统的湿实验室实验虽然可靠,但往往耗时且劳动强度大,这使得计算方法成为一种有吸引力的替代方案。现有的基于相似性的机器学习模型用于预测微生物 - 药物关联,通常依赖于综合相似性作为输入,而忽略了个体相似性的独特贡献,这可能会影响预测准确性。为了克服这些限制,我们开发了MPEMDA,这是一种新颖的方法,它使用各种相似性组合预先完成微生物 - 药物关联矩阵,并采用带有纠错的标签传播算法来预测微生物 - 药物关联。与现有方法相比,MPEMDA同时利用通过相似性网络融合(SNF)方法获得的综合和个体相似性来预先完成已知的药物 - 微生物关联矩阵,然后进行纠错以优化标签传播算法生成的预测分数。在三个基准数据集上的实验结果表明,MPEMDA在五折交叉验证和从头测试中均优于现有方法。此外,对药物和微生物的案例研究突出了该方法在识别新型微生物 - 药物关联方面的强大潜力。MPEMDA代码可在https://github.com/lyx8527/MPEMDA获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验