Suppr超能文献

通过覆盖膜的孔隙进行粘附驱动的囊泡转运。

Adhesion-driven vesicle translocation through membrane-covered pores.

作者信息

Baruah Nishant, Midya Jiarul, Gompper Gerhard, Dasanna Anil Kumar, Auth Thorsten

机构信息

Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany.

Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany; School of Basic Sciences, Indian Institute of Technology, Bhubaneswar, India.

出版信息

Biophys J. 2025 Mar 4;124(5):740-752. doi: 10.1016/j.bpj.2025.01.012. Epub 2025 Jan 24.

Abstract

Translocation across barriers and through constrictions is a mechanism that is often used in vivo for transporting material between compartments. A specific example is apicomplexan parasites invading host cells through the tight junction that acts as a pore, and a similar barrier crossing is involved in drug delivery using lipid vesicles penetrating intact skin. Here, we use triangulated membranes and energy minimization to study the translocation of vesicles through pores with fixed radii. The vesicles bind to a lipid bilayer spanning the pore, the adhesion-energy gain drives the translocation, and the vesicle deformation induces an energy barrier. In addition, the deformation-energy cost for deforming the pore-spanning membrane hinders the translocation. Increasing the bending rigidity of the pore-spanning membrane and decreasing the pore size both increase the barrier height and shift the maximum to smaller fractions of translocated vesicle membrane. We compare the translocation of initially spherical vesicles with fixed membrane area and freely adjustable volume to that of initially prolate vesicles with fixed membrane area and volume. In the latter case, translocation can be entirely suppressed. Our predictions may help rationalize the invasion of apicomplexan parasites into host cells and design measures to combat the diseases they transmit.

摘要

跨越屏障和狭窄通道的转运是一种在体内常用于在不同隔室之间运输物质的机制。一个具体例子是顶复门寄生虫通过充当孔道的紧密连接侵入宿主细胞,并且在使用脂质囊泡穿透完整皮肤进行药物递送中也涉及类似的跨越屏障过程。在这里,我们使用三角化膜和能量最小化方法来研究囊泡通过具有固定半径的孔道的转运。囊泡与跨越孔道的脂质双层结合,粘附能的增加驱动转运,而囊泡变形会引发一个能量屏障。此外,使跨越孔道的膜变形所需的变形能成本会阻碍转运。增加跨越孔道的膜的弯曲刚度以及减小孔径都会增加屏障高度,并将最大值转移到已转运囊泡膜的更小比例处。我们将初始为球形、具有固定膜面积和可自由调节体积的囊泡的转运与初始为长形、具有固定膜面积和体积的囊泡的转运进行了比较。在后一种情况下,转运可能会被完全抑制。我们的预测可能有助于阐明顶复门寄生虫侵入宿主细胞的机制,并设计对抗它们所传播疾病的措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c22/11897550/f08027f0d163/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验