Butu Ioana C, An Dong, O'Shaughnessy Ben
Department of Chemical Engineering, Columbia University, New York, New York.
Department of Chemical Engineering, Columbia University, New York, New York.
Biophys J. 2025 Jan 24. doi: 10.1016/j.bpj.2025.01.015.
Membrane fusion is central to fundamental cellular processes such as exocytosis, when an intracellular machinery fuses membrane-enclosed vesicles to the plasma membrane for content release. The core machinery components are the SNARE proteins. SNARE complexation pulls the membranes together, but the fusion mechanism remains unclear. A common view is that the complexation energy drives fusion, but how this energy is harvested for fusion is unexplained. Moreover, SNAREs likely fully assemble before fusion. Computer simulation is challenging, as even fast neurotransmitter release at neuronal synapses involves fusion on ms timescales, beyond the scope of atomistic or mildly coarse-grained approaches. Here, we used highly coarse-grained representations, allowing simulation of the ms timescales of physiological SNARE-driven fusion under physiological conditions. Due to constant collisions, the rod-like SNARE complexes spontaneously generated entropic forces ∼8 pN per SNARE that cleared the fusion site and squeezed the membranes with forces ∼19 pN per SNARE, catalyzing a hemifused stalk connection. Regrouping, five or more SNARE complexes exerted entropic tensions 2.5 pN/nm or greater, expanding the stalk into a hemifusion diaphragm (HD), followed by HD rupture and fusion. The entropic forces generated tensions ∼17-21 pN in the SNARE linker domains (LDs). Previous optical tweezer measurements suggest that, on the ms timescales of fusion, these LD tensions are sufficient to unzipper the LDs while leaving the C-terminal domain (CTD) marginally intact, which are both required for fusion. Consistent with a recent magnetic tweezers study, we propose that the CTD may be further stabilized by complexin for robust fusion. Our results explain how SNARE-generated forces fuse membranes and predict that more SNARE complexes exert higher net force so that fusion is faster, consistent with experimental electrophysiological studies at neuronal synapses. Thus, entropic forces evolve SNARE complexes into a fusogenic, partially unzippered state, squeeze membranes for hemifusion, and expand hemifusion connections for fusion.
膜融合对于诸如胞吐作用等基本细胞过程至关重要,在胞吐过程中,细胞内机制将膜包裹的囊泡与质膜融合以释放内容物。核心机制组件是SNARE蛋白。SNARE蛋白形成复合体将膜拉到一起,但融合机制仍不清楚。一种普遍观点认为,复合体形成能量驱动融合,但这种能量如何用于融合尚无法解释。此外,SNARE蛋白可能在融合前就已完全组装好。计算机模拟具有挑战性,因为即使是神经元突触处快速的神经递质释放也涉及毫秒时间尺度上的融合,超出了原子istic或轻度粗粒度方法的范围。在此,我们使用了高度粗粒度的表示方法,从而能够在生理条件下模拟生理SNARE驱动融合的毫秒时间尺度。由于持续碰撞,棒状SNARE复合体自发产生每根SNARE约8皮牛的熵力,清除融合位点并以每根SNARE约19皮牛的力挤压膜,催化半融合柄连接。重新组合后,五个或更多SNARE复合体施加2.5皮牛/纳米或更大的熵张力,将柄扩展为半融合隔膜(HD),随后HD破裂并融合。熵力在SNARE连接域(LD)中产生约17 - 21皮牛的张力。先前的光镊测量表明,在融合的毫秒时间尺度上,这些LD张力足以解开LD,同时使C末端结构域(CTD)略微保持完整,而这两者都是融合所必需的。与最近的磁镊研究一致,我们提出CTD可能通过复合体蛋白进一步稳定以实现稳健融合。我们的结果解释了SNARE产生的力如何使膜融合,并预测更多SNARE复合体施加更高的合力,从而使融合更快,这与神经元突触处的实验电生理研究一致。因此,熵力将SNARE复合体演变为促融合的、部分解开的状态,挤压膜以实现半融合,并扩展半融合连接以实现融合。