Suppr超能文献

用于高能锂金属电池和铝金属电池的无全氟烷基磺酸离子液体电解质的研发

Development of PFAS-Free Locally Concentrated Ionic Liquid Electrolytes for High-Energy Lithium and Aluminum Metal Batteries.

作者信息

Liu Xu, Xu Cheng, Adenusi Henry, Wu Yuping, Passerini Stefano

机构信息

School of Energy and Environment & Z Energy Storage Center, Southeast University, 211189 Nanjing, China.

Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtzstrasse 11, 89081 Ulm, Germany.

出版信息

Acc Chem Res. 2025 Feb 4;58(3):354-365. doi: 10.1021/acs.accounts.4c00653. Epub 2025 Jan 26.

Abstract

ConspectusLithium-ion batteries (LIBs) based on graphite anodes are a widely used state-of-the-art battery technology, but their energy density is approaching theoretical limits, prompting interest in lithium-metal batteries (LMBs) that can achieve higher energy density. In addition, the limited availability of lithium reserves raises supply concerns; therefore, research on postlithium metal batteries is underway. A major issue with these metal anodes, including lithium, is dendritic formation and insufficient reversibility, which leads to safety risks due to short circuits and the use of flammable electrolytes.Ionic liquid electrolytes (ILEs), composed of metal salts and ionic liquids, offer a safer alternative due to their nonflammable nature and high thermal stability. Moreover, they can enable high Coulombic efficiency (CE) for lithium metal anodes (LMAs) and allow reversible stripping/plating of various post-lithium metals for battery application, e.g., aluminum metal batteries (AMBs). Despite these advantages, ILEs suffer from high viscosity, which impairs ion transport and wettability. To resolve these challenges, researchers have developed locally concentrated ionic liquid electrolytes (LCILEs) by adding low-viscosity nonsolvating cosolvents, e.g., hydrofluoroether, to ILEs. These cosolvents do not coordinate with cationic charge carriers, thereby reducing viscosity and improving ion transport without compromising the compatibility of electrolytes with metal anodes. However, due to the inherent difference of molecular organic solvents and ionic liquids full of charged species, the most used nonsolvating cosolvents, i.e., hydrofluoroether, are less effective for ILEs with respect to concentrated electrolytes based on conventional organic solvents. Moreover, hydrofluoroether contains environmentally problematic -CF and/or -CF- groups, i.e., per- and polyfluoroalkyl substances (PFAS), with their use subject to restrictions.In this Account, we provide an overview of the endeavors of our research group on the development of PFAS-free LCILEs for high-energy LMBs and AMBs. First, aromatic organic cations and aromatic less/nonfluorinated cosolvents are proposed to weaken the organic cation-anion interaction and strengthen the organic cation-cosolvent interaction, respectively. This is with consideration of the uncovered phase nanosegregation structure of LCILEs that effectively reduces the viscosity and promotes the Li transport ability with respect to the conventional nonaromatic organic cations and highly fluorinated PFAS cosolvents. Then, the effect of electrolyte components that do not coordinate to Li, including organic cations and nonsolvating cosolvents, on the SEI composition and LMA reversibility is presented, which confirms the feasibility of reaching a high lithium stripping/plating CE up to 99.7% in the developed PFAS-free LCILEs. In the subsequent discussion on cathode compatibility, we present that in addition to LiFePO with high cyclability but inferior energy density, nickel-rich layered oxide and sulfurized polyacrylonitrile (SPAN) can be employed to construct high-energy LMBs for PFAS-free LCILEs with different anodic stability. Additionally, the feasible application of the LCILE strategy to promote the kinetics of AMBs relying on a different anode chemistry is demonstrated. Lastly, future research directions with an emphasis on nonsolvating component optimization, electrolyte dynamics, and electrode/electrolyte interphase formation are provided.

摘要

概述

基于石墨负极的锂离子电池(LIBs)是一种广泛应用的先进电池技术,但其能量密度已接近理论极限,这引发了人们对能够实现更高能量密度的锂金属电池(LMBs)的兴趣。此外,锂储量的有限可用性引发了供应担忧;因此,后锂金属电池的研究正在进行中。这些金属负极(包括锂)的一个主要问题是枝晶形成和可逆性不足,这会因短路和使用易燃电解质而导致安全风险。

由金属盐和离子液体组成的离子液体电解质(ILEs),因其不可燃的性质和高的热稳定性提供了一种更安全的选择。此外,它们能够实现锂金属负极(LMAs)的高库仑效率(CE),并允许对用于电池应用的各种后锂金属进行可逆的脱嵌/镀覆,例如铝金属电池(AMBs)。尽管有这些优点,但ILEs具有高粘度,这会损害离子传输和润湿性。为了解决这些挑战,研究人员通过向ILEs中添加低粘度的非溶剂化共溶剂(例如氢氟醚)开发了局部浓集离子液体电解质(LCILEs)。这些共溶剂不与阳离子电荷载体配位,从而降低粘度并改善离子传输,同时不损害电解质与金属负极的兼容性。然而,由于分子有机溶剂与充满带电物种的离子液体的固有差异,最常用的非溶剂化共溶剂,即氢氟醚,对于基于传统有机溶剂的浓集电解质而言,对ILEs的效果较差。此外,氢氟醚含有对环境有问题的-CF和/或-CF-基团,即全氟和多氟烷基物质(PFAS),其使用受到限制。

在本综述中,我们概述了我们研究小组在开发用于高能LMBs和AMBs的无PFAS的LCILEs方面所做的努力。首先,提出了芳族有机阳离子和芳族少氟/无氟共溶剂,分别用于减弱有机阳离子-阴离子相互作用和增强有机阳离子-共溶剂相互作用。这是考虑到LCILEs未被揭示的相纳米分离结构,相对于传统的非芳族有机阳离子和高度氟化的PFAS共溶剂,该结构有效地降低了粘度并提高了Li传输能力。然后,介绍了不与Li配位的电解质成分(包括有机阳离子和非溶剂化共溶剂)对SEI组成和LMA可逆性的影响,这证实了在开发的无PFAS的LCILEs中达到高达99.7%的高锂脱嵌/镀覆CE的可行性。在随后关于正极兼容性的讨论中,我们指出除了具有高循环性但能量密度较低的LiFePO之外,富镍层状氧化物和硫化聚丙烯腈(SPAN)可用于构建具有不同阳极稳定性的用于无PFAS的LCILEs的高能LMBs。此外,展示了LCILE策略在促进依赖于不同阳极化学的AMBs动力学方面的可行应用。最后,提供了未来的研究方向,重点是优化非溶剂化成分、电解质动力学以及电极/电解质界面的形成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/346a/11800393/fe98f44171f6/ar4c00653_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验