Suppr超能文献

用于日本放射学报告的零样本信息提取和聚类的大语言模型方法:算法开发与验证

Large Language Model Approach for Zero-Shot Information Extraction and Clustering of Japanese Radiology Reports: Algorithm Development and Validation.

作者信息

Yamagishi Yosuke, Nakamura Yuta, Hanaoka Shouhei, Abe Osamu

机构信息

Division of Radiology and Biomedical Engineering, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.

Department of Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo Hospital, Tokyo, Japan.

出版信息

JMIR Cancer. 2025 Jan 23;11:e57275. doi: 10.2196/57275.

Abstract

BACKGROUND

The application of natural language processing in medicine has increased significantly, including tasks such as information extraction and classification. Natural language processing plays a crucial role in structuring free-form radiology reports, facilitating the interpretation of textual content, and enhancing data utility through clustering techniques. Clustering allows for the identification of similar lesions and disease patterns across a broad dataset, making it useful for aggregating information and discovering new insights in medical imaging. However, most publicly available medical datasets are in English, with limited resources in other languages. This scarcity poses a challenge for development of models geared toward non-English downstream tasks.

OBJECTIVE

This study aimed to develop and evaluate an algorithm that uses large language models (LLMs) to extract information from Japanese lung cancer radiology reports and perform clustering analysis. The effectiveness of this approach was assessed and compared with previous supervised methods.

METHODS

This study employed the MedTxt-RR dataset, comprising 135 Japanese radiology reports from 9 radiologists who interpreted the computed tomography images of 15 lung cancer patients obtained from Radiopaedia. Previously used in the NTCIR-16 (NII Testbeds and Community for Information Access Research) shared task for clustering performance competition, this dataset was ideal for comparing the clustering ability of our algorithm with those of previous methods. The dataset was split into 8 cases for development and 7 for testing, respectively. The study's approach involved using the LLM to extract information pertinent to lung cancer findings and transforming it into numeric features for clustering, using the K-means method. Performance was evaluated using 135 reports for information extraction accuracy and 63 test reports for clustering performance. This study focused on the accuracy of automated systems for extracting tumor size, location, and laterality from clinical reports. The clustering performance was evaluated using normalized mutual information, adjusted mutual information , and the Fowlkes-Mallows index for both the development and test data.

RESULTS

The tumor size was accurately identified in 99 out of 135 reports (73.3%), with errors in 36 reports (26.7%), primarily due to missing or incorrect size information. Tumor location and laterality were identified with greater accuracy in 112 out of 135 reports (83%); however, 23 reports (17%) contained errors mainly due to empty values or incorrect data. Clustering performance of the test data yielded an normalized mutual information of 0.6414, adjusted mutual information of 0.5598, and Fowlkes-Mallows index of 0.5354. The proposed method demonstrated superior performance across all evaluation metrics compared to previous methods.

CONCLUSIONS

The unsupervised LLM approach surpassed the existing supervised methods in clustering Japanese radiology reports. These findings suggest that LLMs hold promise for extracting information from radiology reports and integrating it into disease-specific knowledge structures.

摘要

背景

自然语言处理在医学中的应用显著增加,包括信息提取和分类等任务。自然语言处理在构建自由格式的放射学报告、促进文本内容解读以及通过聚类技术提高数据实用性方面发挥着关键作用。聚类有助于在广泛的数据集中识别相似的病变和疾病模式,对汇总信息和在医学影像中发现新见解很有用。然而,大多数公开可用的医学数据集是英文的,其他语言的资源有限。这种稀缺性给面向非英语下游任务的模型开发带来了挑战。

目的

本研究旨在开发和评估一种使用大语言模型(LLMs)从日本肺癌放射学报告中提取信息并进行聚类分析的算法。评估了这种方法的有效性,并与以前的监督方法进行了比较。

方法

本研究采用了MedTxt-RR数据集,该数据集包含9位放射科医生对从Radiopaedia获取的15例肺癌患者的计算机断层扫描图像进行解读的135份日本放射学报告。该数据集曾用于NTCIR-16(信息获取研究的NII测试平台和社区)共享任务中的聚类性能竞赛,非常适合将我们算法的聚类能力与以前的方法进行比较。数据集分别分为8例用于开发和7例用于测试。该研究的方法包括使用大语言模型提取与肺癌发现相关的信息,并将其转换为用于聚类的数值特征,采用K均值方法。使用135份报告评估信息提取准确性,使用63份测试报告评估聚类性能。本研究关注从临床报告中自动提取肿瘤大小、位置和侧别的准确性。使用归一化互信息、调整互信息以及Fowlkes-Mallows指数对开发数据和测试数据的聚类性能进行评估。

结果

135份报告中有99份(73.3%)准确识别了肿瘤大小,36份报告(26.7%)存在错误,主要是由于大小信息缺失或错误。135份报告中有112份(83%)对肿瘤位置和侧别的识别更准确;然而,23份报告(17%)包含错误,主要是由于空值或数据错误。测试数据的聚类性能产生的归一化互信息为0.6414,调整互信息为0.5598,Fowlkes-Mallows指数为0.5354。与以前的方法相比,所提出的方法在所有评估指标上都表现出卓越的性能。

结论

无监督的大语言模型方法在聚类日本放射学报告方面超越了现有的监督方法。这些发现表明,大语言模型在从放射学报告中提取信息并将其整合到特定疾病的知识结构方面具有潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0e8/11867198/429e1b41f4c5/cancer-v11-e57275-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验