Suppr超能文献

用于非小细胞肺癌中表皮生长因子受体突变状态预测的机器学习方法:一项更新的系统评价

Machine learning approaches for EGFR mutation status prediction in NSCLC: an updated systematic review.

作者信息

Haixian Liu, Shu Pang, Zhao Li, Chunfeng Lu, Lun Li

机构信息

Respiratory and Critical Care Medicine Center, Weifang People's Hospital, Weifang, China.

The First Affiliated Hospital, Shandong Second Medical University, Weifang, China.

出版信息

Front Oncol. 2025 Jul 10;15:1576461. doi: 10.3389/fonc.2025.1576461. eCollection 2025.

Abstract

BACKGROUND

With the rapid advances in artificial intelligence-particularly convolutional neural networks-researchers now exploit CT, PET/CT and other imaging modalities to predict epidermal growth factor receptor (EGFR) mutation status in non-small-cell lung cancer (NSCLC) non-invasively, rapidly and repeatably. End-to-end deep-learning models simultaneously perform feature extraction and classification, capturing not only traditional radiomic signatures such as tumour density and texture but also peri-tumoural micro-environmental cues, thereby offering a higher theoretical performance ceiling than hand-crafted radiomics coupled with classical machine learning. Nevertheless, the need for large, well-annotated datasets, the domain shifts introduced by heterogeneous scanning protocols and preprocessing pipelines, and the "black-box" nature of neural networks all hinder clinical adoption. To address fragmented evidence and scarce external validation, we conducted a systematic review to appraise the true performance of deep-learning and radiomics models for EGFR prediction and to identify barriers to clinical translation, thereby establishing a baseline for forthcoming multicentre prospective studies.

METHODS

Following PRISMA 2020, we searched PubMed, Web of Science and IEEE Xplore for studies published between 2018 and 2024. Fifty-nine original articles met the inclusion criteria. QUADAS-2 was applied to the eight studies that developed models using real-world clinical data, and details of external validation strategies and performance metrics were extracted systematically.

RESULTS

The pooled internal area under the curve (AUC) was 0.78 for radiomics-machine-learning models and 0.84 for deep-learning models. Only 17 studies (29%) reported independent external validation, where the mean AUC fell to 0.77, indicating a marked domain-shift effect. QUADAS-2 showed that 31% of studies had high risk of bias in at least one domain, most frequently in Index Test and Patient Selection.

CONCLUSION

Although deep-learning models achieved the best internal performance, their reliance on single-centre data, the paucity of external validation and limited code availability preclude their use as stand-alone clinical decision tools. Future work should involve multicentre prospective designs, federated learning, decision-curve analysis and open sharing of models and data to verify generalisability and facilitate clinical integration.

摘要

背景

随着人工智能尤其是卷积神经网络的迅速发展,研究人员现在利用CT、PET/CT和其他成像方式,以非侵入性、快速且可重复的方式预测非小细胞肺癌(NSCLC)中的表皮生长因子受体(EGFR)突变状态。端到端深度学习模型同时执行特征提取和分类,不仅能捕捉肿瘤密度和纹理等传统放射组学特征,还能捕捉肿瘤周围微环境线索,因此理论性能上限高于手工放射组学与经典机器学习相结合的方法。然而,对大型、注释良好的数据集的需求、异构扫描协议和预处理管道引入的领域转移,以及神经网络的“黑箱”性质,都阻碍了其临床应用。为了解决证据零散和外部验证稀缺的问题,我们进行了一项系统综述,以评估深度学习和放射组学模型在EGFR预测方面的真实性能,并确定临床转化的障碍,从而为即将开展的多中心前瞻性研究建立基线。

方法

遵循PRISMA 2020,我们在PubMed、Web of Science和IEEE Xplore上搜索了2018年至2024年发表的研究。59篇原创文章符合纳入标准。QUADAS-2应用于八项使用真实世界临床数据开发模型的研究,并系统提取了外部验证策略和性能指标的详细信息。

结果

放射组学-机器学习模型的合并内部曲线下面积(AUC)为0.78,深度学习模型为0.84。只有17项研究(29%)报告了独立外部验证,此时平均AUC降至0.77,表明存在明显的领域转移效应。QUADAS-2显示,31%的研究在至少一个领域存在高偏倚风险,最常见于索引测试和患者选择。

结论

尽管深度学习模型实现了最佳的内部性能,但它们对单中心数据的依赖、外部验证的匮乏以及代码可用性有限,使其无法用作独立的临床决策工具。未来的工作应包括多中心前瞻性设计、联邦学习、决策曲线分析以及模型和数据的开放共享,以验证其可推广性并促进临床整合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a60/12286997/a8da2ea09d86/fonc-15-1576461-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验